首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究多能源电力系统中储能装置的定容及运行,有利于减小功率波动,降低对电网的冲击,提高电能质量。以青海省海西千万瓦级可再生能源基地为例,首先根据光伏电站和风电场的历史数据分析了两种新能源发电系统的出力特性,在此基础上建立了支持向量机模型,对新能源电站的输出功率进行了短期预测。根据光伏电站和风电场的出力预测误差,建立了ARMA误差预测模型,进一步修正了光伏电站和风电场的预测曲线,最后根据出力预测曲线的功率谱确定了储能系统的容量及出力曲线。研究成果可为新能源并网提供技术支持。  相似文献   

2.
The power spectral density of the output of wind turbines provides information on the character of fluctuations in turbine output. Here both 1-second and 1-hour samples are used to estimate the power spectrum of several wind farms. The measured output power is found to follow a Kolmogorov spectrum over more than four orders of magnitude, from 30 s to 2.6 days. This result is in sharp contrast to the only previous study covering long time periods, published 50 years ago. The spectrum defines the character of fill-in power that must be provided to compensate for wind's fluctuations when wind is deployed at large scale. Installing enough linear ramp rate generation (such as a gas generator) to fill in fast fluctuations with amplitudes of 1% of the maximum fluctuation would oversize the fill-in generation capacity by a factor of two for slower fluctuations, greatly increasing capital costs. A wind system that incorporates batteries, fuel cells, supercapacitors, or other fast-ramp-rate energy storage systems would match fluctuations much better, and can provide an economic route for deployment of energy storage systems when renewable portfolio standards require large amounts of intermittent renewable generating sources.  相似文献   

3.
采用蓄能稳压方式把不稳定能量的输入转换为稳定能量的输出是保证可再生能源发电质量和提高能量转换效率的一种有效方法,波力电站采用该方法实现了独立稳定发电.波浪能的波动性及蓄能稳压系统的特点导致了波力电站发电的间歇性和开始发电时电压的冲击性,这些特点决定了负载配置的特殊性.文章论述了具有抗冲击性负载系统的设计思想、实现方法和试验结果.实际海况试验结果表明,该系统有效地避开了发电机的尖峰电压,不仅实现了对白炽灯的正常供电,还实现了对蓄电池的正常充电.  相似文献   

4.
针对光伏并网系统中光伏微电源出力的波动性和间歇性,将蓄电池和超级电容器构成的混合储能系统HESS(hybrid energy storage system)应用到光伏并网系统中可以实现光伏功率平滑、能量平衡以及提高并网电能质量。在同时考虑蓄电池的功率上限和超级电容的荷电状态(SOC)的情况下,对混合储能系统提出了基于超级电容SOC的功率分配策略;该策略以超级电容的SOC和功率分配单元的输出功率作为参考值,对混合储能系统充放电过程进行设计。超级电容和蓄电池以Bi-direction DC/DC变换器与500 V直流母线连接,其中超级电容通过双闭环控制策略对直流母线电压进行控制。仿真结果表明,所提功率分配策略能对混合储能系统功率合理分配,而且实现了单位功率因数并网,稳定了直流母线电压。  相似文献   

5.
Hybrid renewable energy systems (HRES) should be designed appropriately with an adequate combination of different renewable sources and various energy storage methods to overcome the problem of intermittency of renewable energy resources. Focusing on the inevitable impact on the grid caused by strong randomicity and apparent intermittency of photovoltaic (PV) generation system, modeling and control strategy of pure green and grid-friendly hybrid power generation system based on hydrogen energy storage and supercapacitor (SC) is proposed in this paper. Aiming at smoothing grid-connected power fluctuations of PV and meeting load demand, the alkaline electrolyzer (AE) and proton exchange membrane fuel cell (PEMFC) and SC are connected to DC bus of photovoltaic grid-connected generation system. Through coordinated control and power management of PV, AE, PEMFC and SC, hybrid power generation system friendliness and active grid-connection are realized. The validity and correctness of modeling and control strategies referred in this paper are verified through simulation results based on PSCAD/EMTDC software platform.  相似文献   

6.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

7.
Solar and wind energy systems are omnipresent, freely available, environmental friendly, and they are considered as promising power generating sources due to their availability and topological advantages for local power generations. Hybrid solar–wind energy systems, uses two renewable energy sources, allow improving the system efficiency and power reliability and reduce the energy storage requirements for stand-alone applications. The hybrid solar–wind systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. This paper is to review the current state of the simulation, optimization and control technologies for the stand-alone hybrid solar–wind energy systems with battery storage. It is found that continued research and development effort in this area is still needed for improving the systems’ performance, establishing techniques for accurately predicting their output and reliably integrating them with other renewable or conventional power generation sources.  相似文献   

8.
The power flow management scheme for a microgrid (MG)-connected system utilizing a hybrid technique is suggested in this dissertation. An MG-connected system includes photovoltaic, wind turbine, micro turbine and battery storage. Due to the use of this resource, power production is intermittent and unpredictable, as well as unstable, which causes fluctuation of power in hybrid renewable energy system. To ensure the fluctuation of power, an optimal hybrid technique is suggested. The suggested hybrid technique is joint execution on ANFIS and ASOA. ANFIS stands for adaptive neuro fuzzy interference system, and ASOA stands for advanced salp swarm optimization algorithm, thus it is commonly known as the ANFASO method. In the established method, ANFIS is applied to continuously track the MG-connected system's required load. ASOA optimizes the perfect combination of MG in terms of predicted required load. The suggested methodology is used for optimal cost and to increase renewable energy sources (RESs). Constraints are RES accessibility, power demand and the storage elements. Using the MATLAB/Simulink work site, the ANFASO approach is executed and implemented compared with existing methods. The suggested method is compared with genetic algorithm (GA), BFA and the artificial bee colony algorithm (ABC), and the observed elapsed time of ABC is 37.11 seconds, BFA is 36.96 seconds and GA is 38.08 seconds. The elapsed time of the proposed technique was found to be lower (36.47 seconds) compared to existing techniques. Significant improvements regarding utilization of RES and total generation cost accuracy are attainable by utilizing the proposed approach.  相似文献   

9.
The wind and solar energy are omnipresent, freely available, and environmental friendly. The wind energy systems may not be technically viable at all sites because of low wind speeds and being more unpredictable than solar energy. The combined utilization of these renewable energy sources are therefore becoming increasingly attractive and are being widely used as alternative of oil-produced energy. Economic aspects of these renewable energy technologies are sufficiently promising to include them for rising power generation capability in developing countries. A renewable hybrid energy system consists of two or more energy sources, a power conditioning equipment, a controller and an optional energy storage system. These hybrid energy systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. Research and development efforts in solar, wind, and other renewable energy technologies are required to continue for, improving their performance, establishing techniques for accurately predicting their output and reliably integrating them with other conventional generating sources. The aim of this paper is to review the current state of the design, operation and control requirement of the stand-alone PV solar–wind hybrid energy systems with conventional backup source i.e. diesel or grid. This Paper also highlights the future developments, which have the potential to increase the economic attractiveness of such systems and their acceptance by the user.  相似文献   

10.
The renewable energy source like wind energy generates electric power with intermittent nature. Hydrogen energy system can help to solve the fluctuation problem of the wind power. Totalized Hydrogen Energy Utilization System (THEUS) consists of a Unitized Reversible Fuel Cell (URFC), a hydrogen storage tank, and other auxiliary components. Wind power is inherently variable; the URFC will be subjected to a dynamic input power profile in water electrolyzer mode operation. This paper describes the THEUS operation and performance at different variations in intermittent wind power. The performance of the THEUS was evaluated in water electrolyzer and fuel cell mode operation. The stack efficiency, system efficiency, and system efficiency including heat output from the URFC were presented at each operation. The total efficiency of the URFC and THEUS were also investigated. The maximum total efficiency of the URFC and THEUS were 53% and 66%, respectively.  相似文献   

11.
储能系统由于能够实现电能的时空平移,具有响应速度快,规模化等优点,是改善风电波动性,提高其并网能力的有效手段,构建风储联合发电系统成为目前研究重点.简单介绍了风电并网对电力系统的影响及不同类型电池储能技术的发展现状,给出了部分国内外风储联合发电系统的示范工程,并分析了平滑风电功率波动,跟踪计划出力曲线和削峰填谷3种主要运行方式,重点阐述了目前风储联合发电系统控制策略和储能容量配置研究现状,对进一步开展风储联合发电系统的研究进行了展望,指出经济性仍然是制约储能技术应用的关键问题之一,提高包含储能单元的风储联合发电系统的经济性是今后的研究重点.  相似文献   

12.
Nowadays, renewable power system solutions are widely investigated for residential applications. Grid-connected systems including energy storage elements are designed. Advanced research is actually focused on improving the reliability and energy density of renewable systems reducing the whole utility cost. Source and load modeling, power architectures and algorithms are only a few topics to be addressed. Designers have to carefully deal with each subtopic prior to design efficient renewable energy systems. In the literature, each topic is separately discussed and the lack of a unique reference guide is clear to power electronics designers. In this paper, each design step including source and load modeling, hybrid supply architectures and power algorithms, is carefully addressed. A review of existing solutions is presented. The correlation between each topic is deeply analyzed. Guidelines for system design are given. This paper can be referenced as a detailed review of renewable energy system design issues and solutions.  相似文献   

13.
With the increasing proportion of renewable energy (mainly wind power and photovoltaic) connected to the grid, the fluctuation of renewable energy power brings great challenges to the safe and reliable operation of power grid. As a clean, low-carbon secondary energy, hydrogen energy is applied in renewable energy (mainly wind power and photovoltaic) grid-connected power smoothing, which opens up a new way of coupling hydrogen storage energy with renewable energy. This paper focuses on the optimization of capacity of electrolyzers and fuel cells and the analysis of system economy in the process of power output smoothing of wind/photovoltaic coupled hydrogen energy grid-connected system. Based on the complementary characteristics of particle swarm optimization (PSO) and chemical reaction optimization algorithm (CROA), a particle swarm optimization-chemical reaction optimization algorithm (PSO-CROA) are proposed. Aiming at maximizing system profit, the capacity of electrolyzers and fuel cells are constrained by wind power fluctuation, and considering environmental benefits, government subsidies and time value of funds, the objective function and its constraints are established. According to the simulation analysis, by comparing the calculated results with PSO and CROA, it shows that PSO-CROA effectively evaluates the economy of the system, and optimizes the optimal capacity of the electrolyzers and fuel cells. The conclusion of this paper is of great significance for the application of hydrogen energy storage in the evaluation of power smoothness and economy of renewable energy grid connection and the calculation of economic allocation of hydrogen energy storage capacity.  相似文献   

14.
光伏发电的间歇性和随机性是制约其大规模发展的主要因素,由此文章提出一种适用于多场景的光伏-双单元储能系统协同平抑功率波动控制策略。首先,针对光伏电站多个典型出力场景,并结合并网限制要求,对光伏原始功率信号进行变分模态分解,求得并网目标功率和储能需求功率,并利用阈值补偿方法缩短计算时长;然后,通过协调互补的双单元储能系统对储能需求功率进行消纳,使得各储能单元能够在标准充、放循环深度内独立承担任务;最后,在Matlab平台上对所提信号分析算法的平抑效果,以及光伏-双单元储能系统协同平抑功率波动控制策略的普适性进行仿真验证。仿真结果表明,在多个典型场景下,所测得的并网目标功率均满足并网限制要求,所选的分析算法可有效平抑光伏出力的波动,该协同控制策略能够保证双单元储能系统的长期稳定运行,大幅度提高了光伏并网的可靠性。  相似文献   

15.
The inflation of clean, efficient, sustainable, effective, secure, and reliable electricity demand have been triggered much interest for Microgrid (MG) at a miraculous and quickened pace. The necessity of reliability enhancement, diversity of fuel, cutback of greenhouse gases, severe weather fluctuation etc. has stimulated the inclusion of MG concept not only in utility level but also in customer and community level. Incorporation of solar photovoltaic (SPV) and thermoelectric (TE), termed as Solar photovoltaic-thermoelectric (SPV-TE) hybrid system is found be a very promising technique to broadening the utilization of solar spectrum and enhancing the power output effectively-cum-efficiently. This hybrid architecture caters electrical energy with additional thermal energy that signifies upon harnessing of solar insolation in an exceptional way. But in order to retain the voltage profile in the permissible level, MG needs storage mechanism for smoothening of renewable based power inconstancy, catering high active power significantly and dodging the long term reactive power rising. This paper illustrates the comparative analysis of three systems such as Conventional MG;TE coupled Conventional MG, and only TE coupled solar PV based MG defining the necessity of employment of energy storage system (ESS). The superiority of third system has been outlined in terms of lesser complexity in source integration, mitigating the detriment of Wind energy system (WES) and Fuel Cell Systems (FCT) integration in real life application, delivery of higher active power, and lesser reactive power absorbance over the two other systems. The studied system is modeled in MATLAB/Simulink environment and the results are presented to support, verify, and validate the analysis.  相似文献   

16.
Demand of electricity is rising all over the world, both in developing and developed countries due to escalation in world population and economic growth. The exploitation of renewable energy is imperative to mitigate energy crisis and to avoid the environmental downfall. The stochastic nature of many renewable energy sources sets techno-economic and functional limitations in their application for covering most types of energy needs. These limitations can be surmounted if a renewable and a conventional energy source are combined to formulate a hybrid generation power system.This paper examines the techno-economic feasibility of four hybrid power generation systems applied to cover the demand of a typical off-grid residence for a 20 years period. Each one of these hybrid power solutions should involve at least one renewable energy source technology and be able to cover all load needs. Four applications are investigated for each hybrid system, accounting to different geographical areas in Greece with diverse solar and aeolic profile. A comparative analysis is followed to set off the optimal solution based on a minimal total cost criterion.  相似文献   

17.
Owing to the stochastic characteristic of natural wind speed, the output fluctuation of wind farm has a negative impact on power grid when a large-scale wind farm is connected to a power grid. It is very difficult to overcome this impact only by wind farm itself. A novel power system called wind-gas turbine hybrid energy system was discussed, and the framework design of this hybrid energy system was presented in detail in this paper. The hybrid energy system combines wind farm with several small gas turbine power plants to form an integrated power station to provide a relatively firm output power. The small gas turbine power plant has such special advantages as fast start-up, shutdown, and quick load regulation to fit the requirement of the hybrid energy system. Therefore, the hybrid energy system uses the output from the small gas turbine power plants to compensate for the output fluctuation from the wind farm for the firm output from the whole power system. To put this hybrid energy system into practice, the framework must be designed first. The capacity of the wind farm is chosen according to the capacity and units of small gas turbine power plants, load requirement from power grid, and local wind energy resource distribution. Finally, a framework design case of hybrid energy system was suggested according to typical wind energy resource in Xinjiang Autonomous Region in China.  相似文献   

18.
As one of the grid-scale energy storage technologies, compressed air energy storage (CAES) is promising to facilitate the permeability of renewable energies. By integrating CAES into renewable sources, the fluctuation and intermittence of renewable energies could be effectively restrained. Among various CAES system configurations, isothermal CAES (I-CAES) is considered as a most competitive technology with expected high efficiency. However, most of the existing I-CAES systems have trouble in keeping a stable power output. To address this issue, a novel near-isothermal CAES system is proposed in this article to acquire a near stable power output. Imitating the concept of hydraulic accumulator, a two pressure vessels structure is employed to maintain the gas pressure stable during discharging. Besides, the turbine power output can be controlled by adjusting the liquid flow rate of the Pelton turbine under this near constant pressure condition. Based on the system transient model and economic model, the system components transient behavior, parametric analysis, off-design performance analysis and economic evaluation issues are also conducted. Results show that system round trip efficiency (RTE) with 61.42% and energy density (ED) with 0.2015 kWh/m3 can be achieved under design condition. In the discharge process, the gas pressure in vessel varies in a small range, from 68 to 72 bar, which is relatively stable. The power output from Pelton turbine can be maintained around 1 kW. Meanwhile, the initial pressure, the pipe diameter, and the spraying flow rates of circulating pumps have significant effects on system RTE and ED. Furthermore, the Pelton turbine power output level can be adjusted by adding jets number, and the higher storage pressure can make the power output unsteady.  相似文献   

19.
针对用户用电需求和可再生能源发电情况,提出一种由重力势能储能、蓄电池和超级电容组成的混合储能系统,建立其数学模型.针对其不同的特性,提出基于自适应变分模态分解的混合储能系统容量优化配置策略,对混合储能容量优化配置模型求解.以某风光互补电站典型日功率数据为例,对最佳储能系统的分解尺度K和高中、中低频分界点及其对应的储能配...  相似文献   

20.
The power management strategy (PMS) plays an important role in the optimum design and efficient utilization of hybrid energy systems. The power available from hybrid systems and the overall lifetime of system components are highly affected by PMS. This paper presents a novel method for the determination of the optimum PMS of hybrid energy systems including various generators and storage units. The PMS optimization is integrated with the sizing procedure of the hybrid system. The method is tested on a system with several widely used generators in off-grid systems, including wind turbines, PV panels, fuel cells, electrolyzers, hydrogen tanks, batteries, and diesel generators. The aim of the optimization problem is to simultaneously minimize the overall cost of the system, unmet load, and fuel emission considering the uncertainties associated with renewable energy sources (RES). These uncertainties are modeled by using various possible scenarios for wind speed and solar irradiation based on Weibull and Beta probability distribution functions (PDF), respectively. The differential evolution algorithm (DEA) accompanied with fuzzy technique is used to handle the mixed-integer nonlinear multi-objective optimization problem. The optimum solution, including design parameters of system components and the monthly PMS parameters adapting climatic changes during a year, are obtained. Considering operating limitations of system devices, the parameters characterize the priority and share of each storage component for serving the deficit energy or storing surplus energy both resulted from the mismatch of power between load and generation. In order to have efficient power exploitation from RES, the optimum monthly tilt angles of PV panels and the optimum tower height for wind turbines are calculated. Numerical results are compared with the results of optimal sizing assuming pre-defined PMS without using the proposed power management optimization method. The comparative results present the efficacy and capability of the proposed method for hybrid energy systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号