首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Glow-discharge nitriding treatments can modify the hardness and the corrosion resistance properties of austenitic stainless steels. The modified layer characteristics mainly depend on the treatment temperature. In the present paper the results relative to glow-discharge nitriding treatments carried out on AISI 316L austenitic stainless steel samples at temperatures ranging from 673 to 773 K are reported. Treated and untreated samples were characterized by means of microstructural and morphological analysis, surface microhardness measurements and corrosion tests in NaCl solutions. The electrochemical characterization was carried out by means of linear polarizations, free corrosion potential-time curves and prolonged crevice corrosion tests. Nitriding treatments performed at higher temperatures (>723 K) can largely increase the surface hardness of AISI 316L stainless steel samples, but decrease the corrosion resistance properties due to the CrN precipitation. Nevertheless nitriding treatments performed at lower temperatures (?723 K) avoid a large CrN precipitation and allow to produce modified layers essentially composed by a nitrogen super-saturated austenitic metastable phase (S-phase) that shows high hardness and very high pitting and crevice corrosion resistance; at the same polarization potentials the anodic current density values are reduced up to three orders of magnitude in comparison with untreated samples and no crevice corrosion event can be detected after 60 days of immersion in 10% NaCl solution at 328 K.  相似文献   

2.
Within the framework of a research aimed at characterizing the behaviour of new materials to pitting and crevice corrosion, an investigation has been made, using electrochemical techniques, of the following materials: ELI ferritic stainless steels (18 Cr-2 Mo-Ti; 21 Cr-3 Mo-Ti; 26 Cr-1 Mo); high chromium duplex stainless steel (Z 5 CNDU 21-08) and high chromium-nickel austenitic stainless steel (Z 2 CNDU 25-20); commercial austenitic stainless steels (AISI 304 L and 316 L) and laboratory heats of austenitic stainless steels with low contents of interstitials (LTM/18 Cr- 12 Ni, LTM/16 Cr- 14 Ni-2 Mo). It was possible to graduate a scale of resistance to pitting and crevice corrosion in neutral chloride solutions at 40 C; in particular the two experimental austenitic stainless steels LTM/18 Cr- 12 Ni and LTM/16 Cr- 14 Ni-2 Mo are at the same level as the AISI 316 L and 18 Cr-2 Mo-Ti, respectively. An occluded cell was developed and used for determining the critical potential for crevice corrosion (Elocalized corrosion). For the steels under investigation Elocalized corrosion is less noble than Epitting especially for ELI ferritic 18 Cr-2 Mo-Ti and 21 Cr–3 Mo-Ti.  相似文献   

3.
节镍型不锈钢的耐腐蚀性能比较   总被引:1,自引:0,他引:1  
通过3.5%NaCl溶液中动电位极化曲线测定和中性盐雾试验,对200系列奥氏体不锈钢和400系列铁素体不锈钢两类节镍型不锈钢与304不锈钢的耐腐蚀性能进行了对比研究。结果显示,400系列铁素体不锈钢的耐点蚀性能优于200系列奥氏体不锈钢,两种节镍型不锈钢的耐点蚀性能均不如304不锈钢好;200系列奥氏体不锈钢的耐均匀腐蚀性能最差,443不锈钢耐均匀腐蚀性能与304不锈钢相当,439不锈钢比304不锈钢耐均匀腐蚀性能稍差。201、202、304、439和443不锈钢在3.5%NaCl溶液中的点蚀电位分别为(vs.SCE)-32 mV、-22 mV、312mV、165 mV和227 mV,腐蚀速率分别为0.0071 mm/a、0.0062 mm/a、0.0026 mm/a、0.0038 mm/a和0.0024mm/a。  相似文献   

4.
A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The criteria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. A large number of production and laboratory heats in grades AISI 304 and 316 with normal and extremely low managanese and sulphur contents and a number of production heats in more highly alloyed austenitic stainless steels have been studied with regard to their resistance to initiation of pitting and crevice corrosion at various temperatures. The critieria for resistance to initiation was the potentiodynamic pitting potential in 0.1 M NaCl and synthetic seawater and the time to attack initiation for crevice corrosion in 0.5 and 5% NaCl solutions. The main aims of the study were to examine both the effect of manganese relative to that of chromium, molybdenum and sulphur and the effect of heat treatment and sulphide composition on steels with low manganese contents. Mathematical models for calculation of the pitting potentials have been constructed and multiple linear regression analysis gave the equations and their reliabilities. Lowering of the Mn content in austenitic stainless steels to 0.2% gives rise to a material of interest for constructions where pitting or crevice corrosion are judged to be the only potential types of attack, where operational disturbances leading to greatly increased corrosivity do not occur, where attack can not be tolerated, and where steel with normal managanese content has not exhibited fully satisfactory corrosion resistance. If the above conditions are fulfilled the low manganese content can be said to correspond to the same positive effect as is obtained by an addition of the least 1.5% Mo.  相似文献   

5.
采用极化曲线和电化学动电位再活化技术(EPR)研究了不同含量氮(N)、铌(Nb)元素的添加对304奥氏体不锈钢的耐点蚀和耐晶间腐蚀性能的影响。结果表明:N元素的添加可以显著提高材料的耐点蚀性能,但对于晶间腐蚀性能的影响却有不同的机制。少量的N会降低材料的耐晶间腐蚀性能,但含量增加到0.2%时,却可以提高耐晶间腐蚀性能;Nb元素的添加会明显增加材料的耐晶间腐蚀性能,但会降低其耐点蚀性能。基于以上结果,确定了N和Nb添加的最佳含量,并给出上述微量元素改变材料耐腐蚀性能的作用机制。  相似文献   

6.
马宏驰  吴伟  周霄骋  王亮 《表面技术》2018,47(11):126-133
目的 对比研究原始、固溶和敏化态的304和321奥氏体不锈钢在模拟加氢催化氯化铵环境中的应力腐蚀(SCC)行为及机理。方法 将304和321奥氏体不锈钢经过热处理制备成固溶和敏化态试样,采用U形弯试样在模拟加氢催化氯化铵环境中浸泡的应力腐蚀试验方法对其进行研究,通过观察U形弯弧顶的腐蚀形貌和开裂时间,并结合腐蚀及裂纹的SEM照片和电化学测试结果进行分析。结果 原始和固溶状态304不锈钢U形弯试样在氯化铵溶液环境中开裂时间为25 d左右,断口形貌分别为穿晶断口和沿晶断口;敏化态试样18 d后发生开裂,断口形貌为穿晶和沿晶的混合断口。原始和固溶态321不锈钢U形弯试样在该环境中经过39 d均无应力腐蚀裂纹;敏化试样经30 d后产生宏观开裂。电化学测试结果显示,不同热处理态的304不锈钢在氯化铵溶液中均具有明显的点蚀敏感性,321不锈钢在该环境中耐点蚀和应力腐蚀的能力优于304不锈钢。结论 不同状态的304不锈钢在高温氯化铵环境中具有较强的应力腐蚀倾向,特别是敏化态试样;321不锈钢在该环境中的应力腐蚀敏感性相对较小,但敏化处理显著增加了其沿晶应力腐蚀倾向,而固溶态试样具有明显的沿晶腐蚀特征。  相似文献   

7.
The wear resistance of austenitic stainless steels can be improved by thermo-chemical surface treatment with nitrogen and carbon. However, it is possible that the corrosion resistance will be impaired by the precipitation of chromiumnitrid or -carbide. The present contribution deals with investigations of the corrosion behaviour and structural characteristics of a low temperature nitrided and carburised austenitic stainless steel.The material investigated was AISI 316L (X2CrNiMol7-12-2) austenitic stainless steel. A commercial plasma-nitriding unit (pulsed dc) was used for the nitriding and carburising process. Additional samples were treated by the gasoxinitriding process for a comparison between plasma- and gasoxinitriding. The nitrided and carburised layer of austenitic stainless steel consists of the nitrogen or carbon S-phase (expanded austenite), respectively. X-ray diffraction investigations show the typical shift of the peaks to lower angles, indicating expansion of the fcc lattice. Also the X-ray diffraction technique was employed to study the residual stresses in the nitrogen and carbon S-phase. The corrosion behaviour of surface engineered samples was investigated with electrochemical methods. Anodic potentiodynamic polarisation curves were recorded for testing the resistance against general corrosion (in H2SO4) and pitting corrosion (in NaCl).  相似文献   

8.
Abstract

The corrosion of austenitic stainless steels types AISI 304, 310 and 316, and of Inconel alloy, was studied at 25°c, in 5% NaCl solution at an initial pH value of 2·5, and in 5% FeCl3 at pH 1·2. The resistance of the alloys in both corrosive environments was in the order: 310 > 316 > 304 > Inconel. Pre-treatment of the specimens with bubbling chlorine gas increased the subsequent corrosion rates of the alloys. Intermittent bubbling of gas mixtures such as Cl2, N2, and/or H2S, increased the corrosion rate of Inconel alloy when Cl2 was present, but decreased the corrosion rate when H2 was present. Heat treatment of austenitic stainless steels increased the subsequent corrosion rates, whereas 16% pre-straining of annealed specimens slightly reduced the rates. Addition of trisodium phosphate to the corrosive solution reduced the corrosion rates and pitting tendency for all three types of austenitic stainless steel.  相似文献   

9.
Corrosion behaviour of three austenitic Lotus-type porous high nitrogen Ni-free stainless steels exposed to an acidic chloride solution has been investigated by electrochemical tests and weight loss measurements. Polarization resistance indicates that the corrosion rate of Lotus-type porous high nitrogen Ni-free stainless steels is an order of magnitude lower than that of Lotus-type porous 316L stainless steel in acidic environment. The localised corrosion resistance of the investigated high nitrogen Ni-free stainless steels, measured as pitting potential, Eb, also resulted to be higher than that of type 316L stainless steel. The influences of porous structure, surface finish and nitrogen addition on the corrosion behaviour were discussed.  相似文献   

10.
Nitrogen‐based compounds can potentially be used as alternative non‐carbon or low‐carbon fuels. Nevertheless, the corrosion of construction materials at high temperatures and pressures in the presence of such fuel has not been reported yet. This work is focused on the corrosion of AISI Al 6061, 1005 carbon steel (CS), 304, 316L, 310 austenitic stainless steels (SS) and 680 nickel alloy in highly concentrated water solution of ammonium nitrate and urea (ANU). The corrosion at 50 °C and ambient pressure and at 350 °C and 20 bar was investigated to simulate storage and working conditions. Sodium chloride was added to the fuel (0–5 wt%) to simulate industrial fertilizers and accelerated corrosion environment. Heavy corrosion of CS was observed in ANU solution at 50 °C, while Al 6061, 304 and 316L SS showed high resistance both to uniform and pitting corrosion in ANU containing 1% of sodium chloride. Addition of 5% sodium chloride caused pitting of Al 6061 but had no influence on the corrosion of SS. Tests in ANU at 350 °C and 20 bar showed pitting on SS 304 and 316L and 680 nickel alloy. The highest corrosion resistance was found for SS 310 due to formation of stable oxide film on its surface.  相似文献   

11.
Pitting and crevice corrosion of stainless steels in chloride solutions In practice stainless steels in chloride containing waters are found to be susceptible to crevice corrosion and pitting. Corrosion tests were carried out on AISI 304 L stainless using a simulated crevice and the compositions of the electrolyte in the crevice determined. Long term potentiostatic tests were used to determine the critical potentials for crevice corrosion (US), for various steels in sodium chloride solutions at different concentrations and temperatures. The steels studied were 22 CrMo V 121, X 22 CrNi 17 and AISI 304 L. Like the critical pitting potential (UL), US was found to have a strong dependence on the chloride content of the external solution. At higher concentrations the two potentials were similar. At lower concentrations the US was lower than UL. The knowledge of these critical potentials together with well known rest potentials for a steel in an electrolyte of known concentration, allows conclusions to be drawn about its susceptibility to pitting and crevice corrosion. The method is suitable also for other passive metals.  相似文献   

12.
Influence of chromium, molybdenum and nitrogen on the corrosion resistance of the Ni-free, austenitic stainless steel Macrofer 2515MoN (German Alloy No. 1.4653) Nitrogen alloyed, Ni-free, austenitic stainless steels comprising of more than 1 wt.-% nitrogen are a new group of alloys with promising properties. They show a very interesting combination of high strength and toughness with a high corrosion resistance. This combination of properties make the alloys not only suitable for fasteners but also for parts for medical and dental applications. This work shows the influence of chromium, molybdenum and nitrogen on the corrosion resistance of Fe25Mn-alloys in media typical for the above mentioned applications. According to these results Fe25Mn-alloys with appr. 20 wt.-% chromium, about 3 wt.-% molybdenum and appr. 1,3 wt.-% nitrogen have an excellent corrosion resistance in Ringer solution, artificial saliva and artificial sweat. The critical pitting temperature (CPT) as well as the critical crevice temperature (CCT) with 61°C respectively 37°C tested according ASTM G 48A provided significantly higher temperatures when compared to the commercially well established Ni-austenite X6CrNiMoTi17-12-2 (German Alloy No. 1.4571).  相似文献   

13.
L. Freire  G. Pena 《Corrosion Science》2008,50(11):3205-3212
Electrochemical techniques (CV, SECM, CPT) and surface analysis techniques (EDX, SEM) have been employed to assess the corrosion behaviour of the AISI 204Cu stainless steel. The behaviour of this steel has been compared with that of AISI 304 and AISI 434 stainless steels in chlorinated alkaline media. All samples performed well at room temperature under potentiodynamic polarisation up to a chloride to hydroxyl ratio of 10. At this ratio the AISI 204Cu and the AISI 434 steels presented pitting potential at +0.47 V vs. SCE and +0.31 V vs. SCE, respectively. Moreover, the critical pitting temperature was higher for the AISI 204Cu steel than for the AISI 434 steel, respectively 58 °C and 28 °C.In terms of corrosion performance of the AISI 204Cu stainless steel can be classified better than the AISI 434 steel and worse than the AISI 304 steel.Local electrochemical and chemical examinations allowed evidencing the local activity of some pits over long period, and to conclude that the improved corrosion performance of the low nickel alloy AISI 204Cu stainless steel should be ascribed to copper cementation at active corrosion sites.  相似文献   

14.
热加工对复合板不锈钢表层晶间腐蚀的影响   总被引:3,自引:3,他引:0  
对压力容器用低合金钢/不锈钢复合板在热加工后的晶间腐蚀行为进行研究,主要针对三种常用表层不锈钢304,321及316L热加工后的晶间腐蚀特性进行探讨。结果表明:表层不锈钢中,321钢存在少量阶梯组织,接近凹坑组织,过多的热处理工序会引起其晶间腐蚀,但程度上轻于316L钢;304钢为明显的晶间腐蚀类型,受热处理的影响较大,严格控制热加工工艺可使其晶间腐蚀的倾向相对最轻;316L钢热加工过程中的晶间腐蚀倾向最为严重,应尽量减少热处理。合金元素较多的钢种(321和316L)在敏化温度热处理后,晶间腐蚀特征改变不大;低碳不锈钢(304)经热处理后,晶间腐蚀所受影响较大。  相似文献   

15.
Stainless steels, including duplex stainless steels, are extensively used for equipment in pulp bleaching plants. One serious corrosion problem in chlorine dioxide bleach plants is crevice corrosion of stainless steels, which is frequently the factor that limits their use in bleach plants. Crevice corrosion susceptibility of alloys depends on various environmental factors including temperature, chemical composition of environment and resulting oxidation potential of system. Upsets in the bleaching process can dramatically change the corrosivity of the bleaching solutions leading to temperatures and chemical concentrations higher than those normally observed in the bleach process. When the environmental limits are exceeded the process equipment made of stainless steel can be severely affected. Environmental limits for crevice corrosion susceptibility of eight stainless steel alloys with PRE numbers ranging from 27 to 55 were determined in chlorine dioxide environments. Alloys used in this study included austenitic, ferritic-austenitic (duplex), and superaustenitic stainless steels. The performance of the different stainless steel alloys mostly followed the PRE numbers for the respective alloys. The 654SMO alloy with the highest PRE number of 55 showed the highest resistance to crevice corrosion in this environment. Under the most aggressive chlorine dioxide bleach plant conditions tested, even alloys Nicr3127 and 654SMO with PRE numbers 51 and 55 respectively were susceptible to crevice corrosion attack. The two factors that seem to contribute the most to crevice corrosion and pitting in the investigated environments are temperature and potential.  相似文献   

16.
Based on the success of the feasibility study reported, the surface properties of low-temperature plasma carburised P558 Ni-free medical grade (ASTM F2581) austenitic stainless steel have been fully evaluated in terms of electrochemical corrosion, dry- and corrosion-wear and fretting-wear in Ringer's solution. Anodic polarization tests demonstrated that the precipitate-free S-phase generated by low-temperature plasma carburising at 500 °C for 15 h can retain the good corrosion resistance of the untreated ASTM F2581 Ni-Free material in Ringer's solution. The wear resistance of the Ni-free austenitic stainless steel can be improved by 700% and 140% when reciprocating against a WC ball in air (dry-wear) and in Ringer's solution (corrosion-wear) respectively. In addition, the low-temperature plasma carburising treatment can considerably reduce the friction coefficient and improve the fretting-wear resistance of the Ni-free austenitic stainless steel in Ringer's solution.  相似文献   

17.
Potentiodynamic anodic polarization experiments on advanced stainless steels (SS), such as nitrogenbearing type 316L and 317L SS, were carried out in Hank’s solution (8 g NaCl, 0.14 g CaCl2, 0.4 g KC1, 0.35 g NaHCO3, 1 g glucose, 0.1 g NaH2PO4, 0.1 g MgCl2, 0.06 g Na2HPO4 2H2O, 0.06 g MgSO4 7H2O/1000 mL) in order to assess the pitting and crevice corrosion resistance. The results showed a significant improvement in the pitting and crevice corrosion resistance than the commonly used type 316L stainless steel implant material. The corrosion resistance was higher in austenitic stainless steels containing higher amounts of nitrogen. The pit-protection potential for nitrogen-bearing stainless steels was more noble than the corrosion potential indicating the higher repassivation tendency of actively growing pits in these alloys. The accelerated leaching study conducted for the above alloys showed very little tendency for leaching of metal ions, such as iron, chromium, and nickel, at different impressed potentials. This may be due to the enrichment of nitrogen and molybdenum at the passive film and metal interface, which could have impeded the releasing of metal ions through passive film.  相似文献   

18.
Abstract

The corrosion performances of some commercial stainless steel alloys in the brine reject solution from a reverse osmosis sea water desalination plant was studied in terms of their pitting susceptibilities (investigated under aerated conditions at ambient temperature using a cyclic polarisation technique) and crevice corrosion resistances (evaluated in the plant over a 3 month exposure period using multiple crevice test assemblies). The alloys used were four austenitic steels, UNS S31603, UNSS 31703, UNS N08904, UNS S31254, a ferritic steel UNS S44635, and a duplex steel UNS S32550. Cyclic polarisation studies show that the pitting or breakdown potentials for S31603 and S31703 occurred at more active values than for N08904, S31254, S44635, and S32550 alloys, and indicated a reduced resistance to pitting corrosion. The multiple crevice tests show that the alloys S31603, S31703, and N08904 do suffer crevice corrosion in the brine reject solution at ambient temperature, while the S44635 S32550, and S31254 alloys showed considerably higher crevice corrosion resistance.  相似文献   

19.
杨献金  姜志祥 《腐蚀与防护》2012,(7):630-633,637
将445铁素体不锈钢的主要化学成分、力学性能、成型性能和焊接性能等基本性能与304奥氏体不锈钢进行对比,结果表明,445不锈钢具有较好的机加工性能。采用盐雾试验及10%的NaCl溶液加速腐蚀试验等方法,对比445水箱、304水箱及两者混合搭配的内胆水箱的太阳能热水器的耐腐蚀性能。结果表明,445不锈钢耐腐蚀性稍逊于304不锈钢,在80~120℃时,445与304不锈钢均发生蒸汽腐蚀、水线腐蚀,且445不锈钢出现较为严重的点蚀现象。  相似文献   

20.
不锈钢海水潮汐区16年腐蚀行为   总被引:3,自引:0,他引:3  
在青岛、厦门和榆林3个试验站的潮汐区对5种不锈钢暴露16年,总结其腐蚀行为和规律。在潮汐区暴露的不锈钢受点蚀和缝隙腐蚀破坏。不锈钢在潮汐区暴露1至4年的点蚀速度较大,以后点蚀速度减慢。耐点蚀性能较好的不锈钢,耐缝隙腐蚀性能也较好。不锈钢在潮汐区的腐蚀随暴露地点的海水温度升高而加重。增加Cr含量、添加Mo能明显提高不锈钢在潮汐区的耐蚀性。Ni对提高的耐蚀性有效,但影响效果较小。海生物污损能引起不锈钢的局部腐蚀,它对不锈钢在潮汐区的腐蚀有显著影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号