首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a nano-electromechanical system based on an individual single-walled carbon nanotube (SWNT) demonstrating their potential use for future displacement sensing at the nanoscale. The fabrication and characterization of the proposed nanoscaled transducer, consisting of a suspended metal cantilever mounted on top of the center of a suspended SWNT, is presented and discussed. The displacement of the nanoscale cantilever is detected via the electromechanically induced change in conductance of the strained SWNT. A relative differential resistance sensitivity (for a metallic SWNT) of up to 27.5%/nm was measured and a piezoresistive gauge factor of a SWNT of up to 2900 was extracted.  相似文献   

2.
The electrodeposition of metal (Pd and Pt) nanoparticles on networks of pristine single walled carbon nanotubes (SWNTs) has been investigated using a microelectrochemical cell. A microcapillary containing electrolyte solution and a reference electrode is contacted with a silicon oxide substrate bearing a SWNT network, connected as the working electrode. Electrodeposition is promoted by applying a potential between the SWNT network and the reference electrode. By combination of analysis of the resulting current-time curves with atomic force microscopy and field emission scanning electron microscopy imaging of the network surfaces after electrodeposition, the nature of metal nanoparticle formation on SWNTs has been elucidated. In particular, the parameters controlling nanoparticle number density, distribution, and size have been identified, with short deposition times and high driving forces favoring the formation of ultrasmall particles at high density. Capacitance and network resistance effects are minimized in the microcapillary configuration, making it possible to accurately analyze short time-scale deposition processes (millisecond time scale). Furthermore, it is also possible to make many measurements on a pristine sample, simply by moving the position of the microcapillary to a new location on the substrate.  相似文献   

3.
Single-walled carbon nanotube (SWNT) films were prepared on silicon/silica substrates by screen-printed technique at a wafer scale, and their sensing properties to dimethyl methylphosphonate (DMMP) were studied. The SWNT networks were characterized by field-emission scanning electron microscope. The resistance responses to different concentrations of DMMP vapors were investigated at room temperature. The results showed that the resistance changes of the screen-printed SWNT films increased rapidly in varying concentrations ranging from 20 to 200?ppm. The sensor exhibited high resistance responses, good reproducibility and excellent long-term stability for DMMP vapor detection. The screen-printed SWNT networks would be potentially extended to large-scale, low cost and simple manufacturing sensor applications.  相似文献   

4.
5.
Density functional theory (DFT) and tight binding (TB) models have been used to study systems containing single-walled carbon nanotubes (SWNTs) and metal clusters that are of relevance to SWNT growth and regrowth. In particular, TB-based Monte Carlo (TBMC) simulations at 1000 or 1500 K show that Ni atoms that are initially on the surface of the SWNT or that are clustered near the SWNT end diffuse to the nanotube end so that virtually none of the Ni atoms are located inside the nanotube. This occurs, in part, due to the lowering of the Ni atom energies when they retract from the SWNT to the interior of the cluster. Aggregation of the atoms at the SWNT end does not change the chirality within the simulation time, which supports the application of SWNT regrowth (seeded growth) as a potential route for chirality-controlled SWNT production. DFT-based geometry optimisation and direct dynamics at 2000 K show that Cr and Mo atoms in Cr5Co50 and Mo5Co50 clusters prefer to be distributed in the interior of the clusters. Extension of these calculations should deepen our understanding of the role of the various alloy components in SWNT growth.   相似文献   

6.
In this paper, we report that the resistance of the SWNT network grown by chemical vapor deposition has a close relationship with the applied current in the range of microampere to milliamperes. At the temperature of 1.5 K, the resistance of SWNT network will decrease with an increasing current. When the applied current is larger than 1 mA, the resistance tends to saturate gradually. At temperature of 100 K, the resistance remains stable and does not depend on the current. The mechanism of this phenomenon is attributed to the series-parallel connection structure of SWNT network, which forms a conducting network with the percolation probability modulated by the applied current. At low temperature, the resistance of the SWNT network will decrease because the percolation probability becomes large with an increasing current. While at high temperature, the percolation probability remains constant due to thermally assisted transfer effect and thus the resistance is not affected by the applied current.  相似文献   

7.
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si‐based solar cells. Flexible hybrid single‐walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room‐temperature processes for the fabrication of solar‐cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light‐trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high‐performance ultrathin hybrid SWNT/Si solar cells.  相似文献   

8.
We observed that single-walled carbon nanotube (SWNT) was aligned in the presence of TTF This alignment was induced by a specific interaction between SWNT and tetrathiafulvalene (TTF), a well-known organic donor. The interaction between the two molecules can be explained by a charge-transfer, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The binding energies of S (2P1/2) and S (2P3/2) were shifted from 163.0 eV and 164.1 eV to 163.9 eV and 165.1 eV, respectively. In Raman spectra of the SWNT-TTF, three peaks of SWNT in radial breathing mode were also upshifted by 4-5 cm(-1). The charge-transfer interaction also contributed in modifying the electronic structure of SWNT and furthermore enhanced the electrical conductivity of SWNT. A more conductive thin film was fabricated using the SWNT-TTF Four-probe measurement revealed that the surface resistance of the SWNT-TTF film was reduced to 4.359 omega at room temperature while that of SWNT film was 6.894 omega. These results enable carbon nanotubes to be utilized more for practically for industrial applications in fabricating peculiar nano-sized building blocks.  相似文献   

9.
In this paper, we explore the use of two organic materials that have been touted for use as photovoltaic (PV) materials: inherently conducting polymers (ICPs) and carbon nanotubes (CNTs). Due to these materials' attractive features, such as environmental stability and tunable electrical properties, our focus here is to evaluate the use of polyaniline (PANI) and single wall carbon nanotube (SWNT) films in heterojunction diode devices. The devices are characterized by electron microscopy (film morphology), current-voltage characteristics (photovoltaic behavior), and UV/visible/NIR spectroscopy (light absorption). We have found that both PANI and SWNT can be utilized as photovoltaic materials in a simple bilayer configuration with n-type Silicon: n-Si/PANI and n-Si/SWNT. It was our aim to determine how photovoltaic performance was affected utilizing both PANI and SWNT layers in multilayer devices: n-Si/PANI/SWNT and n-Si/SWNT/PANI. The short-circuit current density increased from 4.91 mA/cm(2) (n-Si/PANI) to 12.41 mA/cm(2) (n-Si/PANI/SWNT), while an increase in power conversion efficiency by ~91% was also observed. In the case of n-Si/SWNT/PANI and its corresponding device control (n-Si/SWNT), the short-circuit current density was decreased by an order of magnitude. The characteristics of the device were affected by the architecture and the findings have been attributed to the more effective transport of holes from the PANI to SWNT and less effective transport of holes from PANI to SWNT in the respective multilayer devices.  相似文献   

10.
We present the improvement of carbon nanotube field effects transistors (CNTFETs) performances by chemical tuning of the nanotube/substrate and nanotube/electrode interfaces. Our work is based on a method of selective placement of individual single walled carbon nanotubes (SWNTs) by patterned aminosilane monolayer and its use for the fabrication of self-assembled nanotube transistors. This method brings a relevant solution to the problem of systematic connection of self-organized nanotubes. The aminosilane monolayer reactivity can be used to improve carrier injection and doping level of the SWNT. We show that the Schottky barrier height at the nanotube/metal interface can be diminished in a continuous fashion down to an almost ohmic contact through these chemical treatments. Moreover, sensitivity to 20 ppb of triethylamine is demonstrated for self-assembled CNTFETs, thus opening new prospects for gas sensors taking advantages of the chemical functionality of the aminosilane used for assembling the CNTFETs.  相似文献   

11.
Single-walled carbon nanotube (SWNT) papers were successfully prepared by dispersing SWNTs in Triton X-100 solution, then filtered by PVDF membrane (0.22 microm pore size). The electrochemical behavior and the reversible hydrogen storage capacity of single-walled carbon nanotube (SWNT) papers have been investigated in alkaline electrolytic solutions (6 N KOH) by cyclic voltammetry, linear micropolarization, and constant current charge/discharge measurements. The effect of thickness and the addition of carbon black on hydrogen adsorption/desorption were also investigated. It was found that the electrochemical charge-discharge mechanism occurring in SWNT paper electrodes is somewhere between that of carbon nanotubes (physical process) and that of metal hydride electrodes (chemical process), and consists of a charge-transfer reaction (Reduction/Oxidation) and a diffusion step (Diffusion).  相似文献   

12.
A major obstacle for the applications of single‐walled carbon nanotubes (SWNTs) in electronic devices is their structural diversity, ending in SWNTs with diverse electrical properties. Catalytic chemical vapor deposition has shown great promise in directly synthesizing high‐quality SWNTs with a high selectivity to specific chirality (n, m). During the growth process, the tube–catalyst interface plays crucial roles in regulating the SWNT nucleation thermodynamics and growth kinetics, ultimately governing the SWNT chirality distribution. Starting with the introduction of SWNT growth modes, this review seeks to extend the knowledge about chirality‐selective synthesis by clarifying the energetically favored SWNT cap nucleation and the threshold step for SWNT growth, which describes how the tube–catalyst interface affects both the nucleus energy and the new carbon atom incorporation. Such understandings are subsequently applied to interpret the (n, m) specific growth achieved on a variety of templates, such as SWNT segments or predefined molecular seeds, transition metal (Fe, Co and Ni)‐containing catalysts at low reaction temperatures, W‐based alloy catalysts, and metal carbides at relatively high reaction temperatures. The up to date achievements on chirality‐controlled synthesis of SWNTs is summarized and the remaining major challenges existing in the SWNT synthesis field are discussed.  相似文献   

13.
Density functional theory is used to show that the adhesion between single-walled carbon nanotubes (SWNTs) and the catalyst particles from which they grow needs to be strong to support nanotube growth. It is found that Fe, Co, and Ni, commonly used to catalyze SWNT growth, have larger adhesion strengths to SWNTs than Cu, Pd, and Au and are therefore likely to be more efficient for supporting growth. The calculations also show that to maintain an open end of the SWNT it is necessary that the SWNT adhesion strength to the metal particle is comparable to the cap formation energy of the SWNT end. This implies that the difference between continued and discontinued SWNT growth to a large extent depends on the carbon-metal binding strength, which we demonstrate by molecular dynamics (MD) simulations. The results highlight that first principles computations are vital for the understanding of the binding strength's role in the SWNT growth mechanism and are needed to get accurate force field parameters for MD.  相似文献   

14.
New polyaniline/nanotube (PANI/NT) composites have been synthesized by “in situ” polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles.  相似文献   

15.
Shiau SH  Liu CW  Gau C  Dai BT 《Nanotechnology》2008,19(10):105303
This study presents the synthesis of a dense single-wall carbon nanotube (SWNT) network on a silicon substrate using alcohol as the source gas. The nanosize catalysts required are made by the reduction of metal compounds in ethanol. The key point in spreading the nanoparticles on the substrate, so that the SWNT network can be grown over the entire wafer, is making the substrate surface hydrophilic. This SWNT network is so dense that it can be treated like a thin film. Methods of patterning this SWNT film with integrated circuit compatible processes are presented and discussed for the first time in the literature. Finally, fabrication and characteristic measurements of a field effect transistor (FET) using this SWNT film are also demonstrated. This FET is shown to have better electronic properties than any other kind of thin film transistor. This thin film with good electronic properties can be readily applied in the processing of many other SWNT electronic devices.  相似文献   

16.
Both Ni-?and Co-MCM-41 may be used for the synthesis of single-wall carbon nanotubes (SWNT). We present a comparative investigation that demonstrates that smaller diameter SWNT with a narrower distribution of diameters are produced using Co-MCM-41. Temperature-programmed reduction and x-ray absorption spectroscopy were used to measure the reducibility and metal cluster growth of Ni-?and Co-MCM-41 in He, H(2) and under CO disproportionation reaction. The differences between these two catalysts can be attributed to a greater reducibility of and a greater CO affinity for Ni relative to Co.  相似文献   

17.
Single-walled carbon nanotube (SWNT) films were prepared on interdigitated electrodes by airbrush technique, and their sensing properties to dimethyl methylphosphonate (DMMP) were studied. The SWNT films were characterized by field-emission scanning electron microscope. The response to different concentrations of DMMP vapors were investigated at room temperature. The results showed that the capacitance of airbrush SWNT sensor decreased rapidly in varying concentrations ranging from 12 to 60 mg/m3 (2.4–12 ppm). The capacitance sensitivity was about 12.5 % when exposed to 12 mg/m3 DMMP vapor. The capacitance sensitivity was higher when the initial capacitance and loss tangent were higher and the SWNT film was denser. It was found that the capacitance sensitivity was nearly 10 times to the resistance sensitivity. The airbrush SWNT sensor exhibited highly and fast capacitance response, good repeatability and selectivity for DMMP vapor.  相似文献   

18.
Using the High Pressure carbon monoxide (HiPco) reactor we conducted an experiment on the effects of changing the catalyst concentration. With each catalyst concentration tested the resulting raw HiPco material was characterized for average SWNT lengths, SWNT diameters, residual iron particle size, and large fullerene content. We were able to determine trends in each of these characteristics as the catalyst concentration was changed. As the catalyst concentration was decreased SWNT lengths increased, SWNT diameters increased, the residual iron particle size increased, and the large fullerene content decreased. From these trends we have developed a Competitive Growth model for nucleation and growth of SWNTs via the HiPco process.  相似文献   

19.
曹惠  吕强  刘胜  甘志银 《纳米科技》2010,(5):38-41,45
采用多次旋涂法在玻璃衬底表面涂覆单壁碳纳米管(SWNT)悬浊液,形成均匀的SWNT薄膜,测量碳纳米管的发电特性,利用扫描电子显微镜(SEM)观测SWNT的分布情况,并用四探针电阻仪测量薄膜不同区域的方块电阻和薄膜的电流-电压(1-V)特性,结果表明,薄膜的I-V曲线线性度和重复度很高。不同浓度的氯化钠(NaCl)溶液以不同的流速流过SWNT薄膜表面,研究薄膜两端感应电势和电路中的电流变化情况。通过分析该变化情况,对SWNT发电机理作进一步阐释。  相似文献   

20.
Room temperature ozonolysis of fluorinated SWNT and phenyl-sulfonated SWNT have been studied in perfluoropolyether (PFPE) solvents. Etching at the end caps (approximately 70 nm/hour for fluorinated SWNT/PFPE suspension with 1 g/l concentration) has been demonstrated to be the dominating effect during the ozonolysis of fluorinated SWNT. Base on characterization by AFM analysis, X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy, fluorination along the SWNT sidewalls protects F-SWNT from extensive functionalization by ozonolysis. An ozone reaction with fluorinated SWNT has been found to improve its solubility in 96% sulfuric acid. This allows oxidative cutting by ammonium peroxydisulfate without defluorination. In comparison to fluorinated SWNT, phenyl-sulfonated SWNT was found to be effectively and homogeneous cut by ozonolysis in a water suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号