首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbonation depth-profiles have been determined by thermogravimetric analysis and by gammadensitometry after accelerated carbonation tests on ordinary Portland cement (OPC) pastes and concretes. These methods support the idea that carbonation does not exhibit a sharp reaction front. From analytical modelling, this feature is explained by the fact that the kinetics of the chemical reactions become the rate-controlling processes, rather than the diffusion of CO2. Furthermore, conclusions are drawn as to the mechanism by which carbonation of Ca(OH)2 and C-S-H takes place. Carbonation gives rise to almost complete disappearance of C-S-H gel, while Ca(OH)2 remains in appreciable amount. This may be associated with the CaCO3 precipitation, forming a dense coating around partially reacted Ca(OH)2 crystals. The way in which CO2 is fixed in carbonated samples is studied. The results indicate that CO2 is chemically bound as CaCO3, which precipitates in various forms, namely: stable, metastable, and amorphous. It seems that the thermal stability of the produced CaCO3 is lower when the carbonation level is high. It is also shown that the poorly crystallized and thermally unstable forms of CaCO3 are preferentially associated with C-S-H carbonation.  相似文献   

2.
The reactivity of two metakaolins, which vary principally in their surface area, and Portland cements of varying composition were examined via isothermal calorimetry for pastes at water-to-cementitious materials ratio of 0.50 containing 8% cement replacement by weight of metakaolin. Both metakaolins examined appear to have a catalysing effect on cement hydration. Calorimetry showed accelerated hydration, a slight increase in cumulative heat evolved during early hydration, and - for some cements examined - apparently an increased intensity of the heat evolved, particularly during the period typically associated with hydration of calcium aluminates. The higher surface area metakaolin had a greater effect. It is proposed that the presence of metakaolin may enhance dissolution of cementitious phases and/or provide additional, well-dispersed sites for nucleation of hydration products, in addition to increasing the early age concentration of solubilized aluminium (due to metakaolin dissolution). The increased intensity of some of the calorimetry data also suggests that some additional exothermic reactions are occurring, which may be related to an increased reactivity of calcium aluminate phases in the cement as well as the reaction of the metakaolin. This effect is apparently increased as the cement equivalent alkali content increases.  相似文献   

3.
Use of bacteria to repair cracks in concrete   总被引:3,自引:0,他引:3  
As synthetic polymers, currently used for concrete repair, may be harmful to the environment, the use of a biological repair technique is investigated in this study. Ureolytic bacteria such as Bacillus sphaericus are able to precipitate CaCO3 in their micro-environment by conversion of urea into ammonium and carbonate. The bacterial degradation of urea locally increases the pH and promotes the microbial deposition of carbonate as calcium carbonate in a calcium rich environment. These precipitated crystals can thus fill the cracks. The crack healing potential of bacteria and traditional repair techniques are compared in this research by means of water permeability tests, ultrasound transmission measurements and visual examination. Thermogravimetric analysis showed that bacteria were able to precipitate CaCO3 crystals inside the cracks. It was seen that pure bacteria cultures were not able to bridge the cracks. However, when bacteria were protected in silica gel, cracks were filled completely.  相似文献   

4.
5.
The cementitious behavior of red mud derived from Bauxite-Calcination method was investigated in this research. Red mud were calcined in the interval 400–900 °C to enhance their pozzolanic activity and then characterized in depth through XRD, FTIR and 29Si MAS-NMR techniques with the aim to correlate phase transitions and structural features with the cementitious activity. The cementitious activity of calcined red mud was evaluated through testing the compressive strength of blended cement mortars. The results indicate that red mud calcined at 600 °C has good cementitious activity due to the formation of poorly-crystallized Ca2SiO4. The poorly-crystallized Ca2SiO4 is a metastable phase which will transform into highly-crystallized Ca2SiO4 with the increase of calcination temperature from 700 °C moving to 900 °C. It is the metastable phase that mainly contributes to the good cementitious activity of red mud. This paper points out another promising direction for the proper utilization of red mud.  相似文献   

6.
Hydration reactions of C3A with various amounts of calcium sulfate hemihydrate, gypsum or a mixture of the two, were investigated by isothermal microcalorimetry, and a monitoring of the ionic concentrations of diluted suspensions. This study shows that sulfate type used modifies the early C3A–CaSO4 hydration products and the rate of this hydration. The fast initial AFm formation observed before ettringite precipitation in the C3A–gypsum system is avoided as soon as hemihydrate is present in the suspension. This was attributed to higher super saturation degrees and then higher nucleation frequency with regard to the ettringite obtained in the presence of hemihydrate. Moreover, replacement of gypsum by hemihydrate also leads to an increase of the ettringite formation rate during at least the five first hours under experimental conditions.  相似文献   

7.
Thermodynamic calculations disclose that significant changes of the AFm and AFt phases and amount of Ca(OH)2 occur between 0 and 40 °C; the changes are affected by added calcite. Hydrogarnet, C3AH6, is destabilised at low carbonate contents and/or low temperatures < 8 °C and is unlikely to form in calcite-saturated Portland cement compositions cured at < 40 °C. The AFm phase actually consists of several structurally-related compositions which form incomplete solid solutions. The AFt phase is close to its ideal stoichiometry at 25 °C but at low temperatures, < 20 °C, extensive solid solutions occur with CO3-ettringite. A nomenclature scheme is proposed and AFm-AFt phase relations are presented in isothermal sections at 5, 25 and 40 °C. The AFt and AFm phase relations are depicted in terms of competition between OH, CO3 and SO4 for anion sites. Diagrams are presented showing how changing temperatures affect the volume of the solid phases with implications for space filling by the paste. Specimen calculations are related to regimes likely to occur in commercial cements and suggestions are made for testing thermal impacts on cement properties by defining four regimes. It is concluded that calculation provides a rapid and effective tool for exploring the response of cement systems to changing composition and temperature and to optimise cement performance.  相似文献   

8.
Formation of water-impermeable crust on sand surface using biocement   总被引:1,自引:0,他引:1  
This paper examines the feasibility of using calcium-based biocement to form an impermeable crust on top of a sand layer. The biocement used was a mixture of calcium salt, urea, and bacterial suspension, which hydrolyzed urea with production of carbonate and an increase of the pH level. Applying 0.6 g of Ca per cm2 of sand surface, the permeability of the biocemented sand can be reduced from 10−4 m/s to 1.6·10−7 m/s (or 14 mm/day) due to formation of the crust on sand surface. The rupture modulus (maximum bending stress) of the crust was 35.9 MPa, which is comparable with that of limestone. The formation of a water-impermeable and high strength crust layer on sand surface could be useful for the construction of aquaculture ponds in sand, stabilization of the sand dunes, dust fixation in the desert areas, and sealing of the channels and reservoirs in sandy soil.  相似文献   

9.
A tyrosinase (Tyr) biosensor was developed based on Fe3O4 magnetic nanoparticles (MNPs)-coated carbon nanotubes (CNTs) nanocomposite and further applied to detect the concentration of coliforms with flow injection assay (FIA) system. Negatively charged MNPs were absorbed onto the surface of CNTs which were wrapped with cationic polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA). The Fe3O4 MNPs-coated CNTs nanocomposite was modified on the surface of the glassy carbon electrode (GCE), and Tyr was loaded on the modified electrode by glutaraldehyde. The immobilization matrix provided a good microenvironment for retaining the bioactivity of Tyr, and CNTs incorporated into the nanocomposite led to the improved electrochemical detection of phenol. The Tyr biosensor showed broad linear response of 1.0 × 10−8-3.9 × 10−5 M, low detection limit of 5.0 × 10−9 M and high sensitivity of 516 mA/M for the determination of phenol. Moreover, the biosensor integrated with a FIA system was used to monitor coliforms, represented by Escherichia coli (E. coli). The detection principle was based on determination of phenol which was produced by enzymatic reaction in the E. coli solution. Under the optimal conditions, the current responses obtained in the FIA system were proportional to the concentration of bacteria ranging from 20 to 1 × 105 cfu/mL with detection limit of 10 cfu/mL and the overall assay time of about 4 h. The developed biosensor with the FIA system was well suited for quick and automatic clinical diagnostics and water quality analysis.  相似文献   

10.
Synthesis of pure Portland cement phases   总被引:2,自引:0,他引:2  
  相似文献   

11.
The iron distribution among the sulfoaluminate clinker phases and its ability to enter the calcium sulfoaluminate lattice in solid solution can have a significant influence on manufacturing process and reactivity of calcium sulfoaluminate (CSA) cements. X-ray diffraction (XRD) analysis, Mössbauer spectroscopy, scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analysis system (EDAX) and infrared spectroscopy were used to identify the mineralogical conditions of iron inclusion during the formation of calcium sulfoaluminate (C4A3S) phase from different mixtures in the CaO-Al2O3-Fe2O3-SO3 system. The mixtures, heated in a laboratory electric oven, contained stoichiometric amounts of reagent grade CaCO3, Al2O3, Fe2O3 and CaSO4·2H2O for the synthesis of Ca4Al(6  2x)Fe2xSO16, where x, comprised between 0 and 3, is the mole number of Al2O3 substituted by Fe2O3. With x increasing from 0 to 1.5, both the iron content of C4A3S phase and the amounts of side components such as C2F and CS increased. For x values included in the range of 1.5-3.0, at temperatures higher than 1200 °C, melting phenomena were observed and, instead of the C4A3S solid solution, ferritic phases and anhydrite were formed.  相似文献   

12.
For adsorption of three different allylether-based PCE superplasticizers on CaCO3 surface, the thermodynamic parameters ΔH, ΔS and ΔG were determined experimentally. The GIBBS standard free energy of adsorption ΔG0ads, the standard enthalpy of adsorption ΔH0ads and the standard entropy of adsorption ΔS0ads applying to an unoccupied CaCO3 surface were obtained via a linear regression of ln K (equilibrium constant) versus 1 / T (VAN'T HOFF plot). Additionally, the thermodynamic parameters characteristic for a CaCO3 surface loaded already with polymer (isosteric conditions) were determined using a modified CLAUSIUS-CLAPEYRON equation.For all PCE molecules, negative ΔG values were found, indicating that adsorption of these polymers is energetically favourable and a spontaneous process. Adsorption of PCEs possessing short side chains is mainly instigated by electrostatic attraction and a release of enthalpy. Contrary to this, adsorption of PCEs with long side chains occurs because of a huge gain in entropy. The gain in entropy results from the release of counter ions attached to the carboxylate groups of the polymer backbone and of water molecules and ions adsorbed on the CaCO3 surface. With increased surface loading, however, ΔGisosteric decreases and adsorption ceases when ΔG becomes 0. The presence of Ca2+ ions in the pore solution strongly impacts PCE adsorption, due to complexation of carboxylate groups and a reduced anionic charge amount of the molecule. In the presence of Ca2+, adsorption of allylether-based PCEs is almost exclusively driven by a gain in entropy. Consequently, PCEs should produce a strong entropic effect upon adsorption to be effective cement dispersants. Molecular architecture, anionic charge density and molecular weight as well as the type of anchor groups present in a superplasticizer determine whether enthalpy or entropy is the dominant force for superplasticizer adsorption.  相似文献   

13.
The Brazilian ceramic industry generates large amounts of calcined-clay waste. This paper examines the factors that influence its potential for use as a partial replacement of Portland cement. Superplasticized mortars of equal workability containing ground crushed waste calcined-clay brick (GCWCCB) in the proportions of 10, 20, 30 and 40% as a cement replacement were analyzed through mechanical tests, pore structure characterization and durability tests. The results indicated the optimal percentages of substitution lies between 10% to 20%. The potential reduction of CO2 emissions could be as high as 10% of current Brazilian cement industry emissions if this approach were to be fully implemented, and it could be eligible for “Clean Development Mechanism” credits under Kyoto protocol.  相似文献   

14.
This paper deals with two experimental methods to determine carbonation profiles in concrete. Gammadensimetry is a non-destructive test method able to measure the total penetrated CO2 and to monitor the carbonation process during laboratory accelerated tests. The second method is thermogravimetric analysis (TGA) supplemented with chemical analysis (CA): as TGA is performed on a small mortar sample not representative of the whole tested concrete, CA is needed to proportion the sample cement content, the sand content and to correct the TGA results becoming thus representative of the concrete mix. Consequently, TGA-CA gives accurate quantitative profiles in carbonated cementitious materials. Results are reported for an ordinary Portland cement paste, and three concrete mixes, containing siliceous or calcareous aggregates. The CO2 mass loss due to carbonation occurs from 530 to 950 °C, which overlaps the temperature range of the calcareous aggregate dissociation. To solve the problem, the origin of CaCO3 is carefully analyzed. Calcium carbonate ensuing from C-S-H carbonation dissociates in a lower temperature range than the more stable one ensuing from portlandite carbonation and from limestone, which enables C-S-H carbonation to be distinguished from calcareous aggregates. Therefore, TGA-CA allows the CaCO3 ensuing from C-S-H carbonation to be measured and to calculate the portlandite degraded by carbonation. Thus, the total calcium carbonates profiles can be deduced even when calcareous aggregates is present in the concrete mix.  相似文献   

15.
Pozzolanic activity of clinoptilolite, the most common natural zeolite mineral, was studied in comparison to silica fume, fly ash and a non-zeolitic natural pozzolan. Chemical, mineralogical and physical characterizations of the materials were considered in comparative evaluations. Pozzolanic activity of the natural zeolite was evaluated with various test methods including electrical conductivity of lime-pozzolan suspensions; and free lime content, compressive strength and pore size distribution of hardened lime-pozzolan pastes. The results showed that the clinoptilolite possessed a high lime-pozzolan reactivity that was comparable to silica fume and was higher than fly ash and a non-zeolitic natural pozzolan. The high reactivity of the clinoptilolite is attributable to its specific surface area and reactive SiO2 content. Relatively poor strength contribution of clinoptilolite in spite of high pozzolanic activity can be attributable to larger pore size distribution of the hardened zeolite-lime product compared to the lime-fly ash system.  相似文献   

16.
Fe3O4 magnetic nanoparticles (MNPs) were prepared by the coprecipitation of Fe2+ and Fe3+ using ammonium hydroxide (NH4OH) as precipitating agent. Transmission electronic microscopy (TEM) showed that the particle-size is around 10 nm. X-ray powder diffraction (XRD) indicated the sole existence of inverse cubic spinel phase of Fe3O4. The surface of MNPs was coated with oleate sodium as the primary layer and polyethylene glycol 4000 (PEG-4000) as the secondary layer to improve the stability of water-based ferrofluids (FFs). The dosages of oleate sodium and PEG-4000 were found to have an important effect on increasing the solid content. Gouy magnetic balance showed that the saturation magnetization could be as high as 1.44 × 10A/m. Laser particle-size analyzer determined the aggregate size in FFs. The Fe3O4 MNPs did not change through the preparation of FFs. Differential scanning calorimetry-thermogravimetry (DSC-TG) and Fourier transform infrared spectroscopy (FT-IR) analysis showed existence of two distinct surfactants on the particle surface. The concentrated and diluted FFs were characterized by UV-vis spectrophotometer and excellent stability was found. The rheological measurements indicated that viscosity increased with the increase of solid content and applied magnetic field, but decreased with the increase of temperature. The FFs showed the non-Newtonian behavior of shear-thinning when the solid content was high. The mechanical properties of polyvinylalcohol (PVA) thin film can be greatly improved by adding FFs.  相似文献   

17.
The objective of the presented study was to test various oxidation processes with the aim being to reduce the concentration and toxicity of biocide wastewater from a Slovenian phytopharmaceutical factory. Laboratory-scale experiments employing two AOP processes – ozonation (O3) and peroxone (H2O2/O3) – were applied to reduce the concentration of the active components involved, i.e., methylisothiazolone (MI), chloromethylisothiazolone (CMI) and dichloromethylisothiazolone (DCMI). The reduction of the biocide wastewater load for the performed oxidation processes was evaluated using ecological parameters. The H2O2/O3 oxidation procedure using an O3 flow rate of 1g/L h, at a pH value of 10 and with the addition of 5 ml of H2O2 (0.3 M) proved to be the most effective treatment. The toxicity of the biocide-load wastewater with an initial EC50 = 0.38%, decreased to EC50 (24h) >100% and EC50 (48h) = 76%.  相似文献   

18.
Thermodynamics and cement science   总被引:2,自引:0,他引:2  
Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C–S–H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C–S–H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.  相似文献   

19.
Results of the heterogeneous photocatalytic reduction of Fe(VI) in UV-irradiated TiO2 suspensions in the presence of ammonia are presented. The initial rate of Fe(VI) reduction, R, may be expressed as R = k Fe(VI)[Fe(VI)]1.25 where k Fe(VI) = a[Ammonia]+b), a = 6.0 × 103 μm 0.25 s and b = 4.1 × 106 μm −1.25s−1. The rate constant, k Fe(VI), increases with the ammonia concentration. The photocatalytic oxidation of ammonia is enhanced in the presence of Fe(VI). A mechanism involving Fe(V) as a reactive intermediate is presented which explains the faster photocatalytic oxidation of ammonia in the presence of Fe(VI).  相似文献   

20.
In/HZSM-5 catalyst prepared by the impregnation method was active for NO reduction with methane. Complete reduction of NO was obtained at 450°C over an In/HZSM-5 catalyst. The presence of oxygen in the feed greatly enhanced the NO reduction activity of In/HZSM-5. Co/HZSM-5 and Ga/HZSM-5 were less effective than In/HZSM-5. Cu/HZSM-5, In/Na-ZSM-5 and In2O3/Al2O3 were ineffective for NO reduction with CH4. The NO reduction activity was proportional to the level of indium impregnated onto HZSM-5 but excess amounts of indium were detrimental to the catalytic activity. Phase analysis by XRD measurements demonstrated that there was a threshold value in the indium content, i.e., the maximum dispersion capacity of indium oxides. It is concluded that highly dispersed indium species are the active centers for the selective catalytic reduction of NO with CH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号