首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We performed three column tests to study the behavior of permeable reactive barrier (PRB) materials to remove arsenic under dynamic flow conditions in the absence as well as in the presence of added phosphate and silicate. The column consisted of a 10.3 cm depth of 50:50 (w:w, Peerless iron:sand) in the middle and a 10.3 cm depth of a sediment from Elizabeth City, NC, in both upper and lower portions of the 31-cm-long glass column (2.5 cm in diameter) with three side sampling ports. The flow velocity (upflow mode) was maintained at 4.3 m d(-1) during the 3-4-month experiments. As expected, dissolved As concentrations in different positions of the column generally followed the order: column influent > bottom port effluent > middle port effluent > top port effluent > column effluent. The steady-state As removal in the middle Peerless iron and sand mixture zone might be attributed to the continuous supply of corroded iron in the form of iron oxides and hydroxides that served as the sorbents for both As(V) and As(III). Consistent with previous batch study findings, dissolved phosphate (0.5 or 1 mg of P L(-1)) and silicate (10 or 20 mg of Si L(-1)) showed strong inhibition for As(V) and As(III) (1 mg of As(V) L(-1) + 1 mg of As(III) L(-1) in 7 mM NaCl + 0.86 mM CaSO4) removal by Peerless iron in the column tests. The presence of combined phosphate and silicate resulted in earlier breakthrough (C = 0.5C0) and earlier complete breakthrough of dissolved arsenic relative to absence of added phosphate and silicate in the bottom port effluent. Competition between As(V)/As(III) and phosphate/silicate forthe sorption sites on the corrosion products of Peerless iron seems to be the cause of the observations. This effect is especially important in the case of silicate for designing a PRB of zerovalent iron for field use because dissolved silicate is ubiquitous in terrestrial waters.  相似文献   

2.
Batch tests were performed utilizing four zerovalent iron (Fe0) filings (Fisher, Peerless, Master Builders, and Aldrich) to remove As(V) and As(III) from water. One gram of metal was reacted headspace-free at 23 degrees C for up to 5 days in the dark with 41.5 mL of 2 mg L(-1) As(V), or As(III) or As(V) + As(III) (1:1) in 0.01 M NaCl. Arsenic removal on a mass basis followed the order: Fisher > Peerless Master Builders > Aldrich; whereas, on a surface area basis the order became: Fisher > Aldrich > Peerless Master Builders. Arsenic concentration decreased exponentially with time, and was below 0.01 mg L(-1) in 4 days with the exception of Aldrich Fe0. More As(III) was sorbed than As(V) by Peerless Fe0 in the initial As concentration range between 2 and 100 mg L(-1). No As(III) was detected by X-ray photoelectron spectroscopy (XPS) on Peerless Fe0 at 5 days when As(V) was the initial arsenic species in the solution. As(III) was detected by XPS at 30 and 60 days present on Peerless Fe0, when As(V) was the initial arsenic species in the solution. Likewise, As(V) was found on Peerless Fe0 when As(II) was added to the solution. A steady distribution of As(V) (73-76%) and As(III) (22-25%) was achieved at 30 and 60 days on the Peerless Fe0 when either As(V) or As(III) was the initial added species. The presence of both reducing species (Fe0 and Fe2+) and an oxidizing species (MnO2) in Peerless Fe0 is probably responsible for the coexistence of both As(V) and As(III) on Fe0 surfaces. The desorption of As(V) and As(III) by phosphate extraction decreased as the residence time of interaction between the sorbents and arsenic increased from 1 to 60 days. The results suggest that both As(V) and As(III) formed stronger surface complexes or migrated further inside the interior of the sorbent with increasing time.  相似文献   

3.
Zerovalent iron (Fe0) has tremendous potential as a remediation material for removal of arsenic from groundwater and drinking water. This study investigates the speciation of arsenate (As(V)) and arsenite (As(III)) after reaction with two Fe0 materials, their iron oxide corrosion products, and several model iron oxides. A variety of analytical techniques were used to study the reaction products including HPLC-hydride generation atomic absorption spectrometry, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray analysis, and X-ray absorption spectroscopy. The products of corrosion of Fe0 include lepidocrocite (gamma-FeOOH), magnetite (Fe3O4), and/or maghemite (gamma-Fe2O3), all of which indicate Fe(II) oxidation as an intermediate step in the Fe0 corrosion process. The in-situ Fe0 corrosion reaction caused a high As(III) and As(V) uptake with both Fe0 materials studied. Under aerobic conditions, the Fe0 corrosion reaction did not cause As(V) reduction to As(III) but did cause As(III) oxidation to As(V). Oxidation of As(III) was also caused by maghemite and hematite minerals indicating that the formation of certain iron oxides during Fe0 corrosion favors the As(V) species. Water reduction and the release of OH- to solution on the surface of corroding Fe0 may also promote As(III) oxidation. Analysis of As(III) and As(V) adsorption complexes in the Fe0 corrosion products and synthetic iron oxides by extended X-ray absorption fine structure spectroscopy (EXAFS) gave predominant As-Fe interatomic distances of 3.30-3.36 A. This was attributed to inner-sphere, bidentate As(III) and As(V) complexes. The results of this study suggest that Fe0 can be used as a versatile and economical sorbent for in-situ treatment of groundwater containing As(III) and As(V).  相似文献   

4.
Zerovalent iron filings have been proposed as a filter medium for removing arsenic compounds from potable water supplies. This research investigated the kinetics of arsenate removal from aqueous solutions by zerovalent iron media. Batch experiments were performed to determine the effect of the iron corrosion rate on the rate of As(V) removal. Tafel analyses were used to determine the effect of the As(V) concentration on the rate of iron corrosion in anaerobic solutions. As(V) removal in column reactors packed with iron filings was measured over a 1-year period of continuous operation. Comparison of As(V) removal by freely corroding and cathodically protected iron showed that rates of arsenate removal were dependent on the continuous generation of iron oxide adsorption sites. In addition to adsorption site availability, rates of arsenate removal were also limited by mass transfer associated with As(V) diffusion through iron corrosion products. Steady-state removal rates in the column reactor were up to 10 times faster between the inlet-end and the first sampling port than between the first sampling port and the effluent-end of the column. Faster removal near the influent-end of the column was due to a faster rate of iron oxidation in that region. The presence of 100 microg/L As(V) decreased the iron corrosion rate by up to a factor of 5 compared to a blank electrolyte solution. However, increasing the As(V) concentration from 100 to 20,000 microg/L resulted in no further decrease in the iron corrosion rate. The kinetics of arsenate removal ranged between zeroth- and first-order with respect to the aqueous As(V) concentration. The apparent reaction order was dependent on the availability of adsorption sites and on the aqueous As(V) concentration. X-ray absorption spectroscopy analyses showed the presence of iron metal, magnetite (Fe3O4), an Fe(III) oxide phase, and possibly an Fe(II,III) hydroxide phase in the reacted iron filings. These mixed valent oxide phases are not passivating and permit sustained iron corrosion and continuous generation of new sites for As(V) adsorption.  相似文献   

5.
Degradation efficiencies of zerovalent iron (Fe0) containing different bacterial inocula, i.e., an iron(III)-reducing Geobacter sulfurreducens strain and/or a bacterial consortium, were compared to degradation efficiencies of noninoculated Fe0 in a laboratory-scale column experiment. Contaminant removal efficiencies and hydrogen production rates indicated an increasing reactivity in time for all inoculated iron columns, while reactivity of the noninoculated columns remained the same. The main mineral precipitates, including carbonate green rust, ferrous hydroxy carbonate, aragonite, and to a lesser extent goethite, were observed under all imposed conditions. The higher reactivity of the inoculated column material is explicable by the reduction of ferric iron species by iron(III)-reducing bacteria, resulting in the observed higher amounts of highly reactive carbonate green rust. However, contributions of other bacteria could not be excluded. Although different groups of hydrogen-consuming bacteria were detected in the columns, no indication was found that hydrogen consumption was sufficiently high to affect reactivity or permeability of the iron matrix, as the abiotic generation of H2 was substantially exceeding its potential consumption.  相似文献   

6.
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.  相似文献   

7.
Zerovalent iron filings have been proposed as a filter medium for removing As(III) and As(V) compounds from potable water. The removal mechanism involves complex formation of arsenite and arsenate with the iron surface and with iron oxides produced from iron corrosion. There is conflicting evidence in the literature on whether As(V) can be reduced to As(III) by iron filter media. This research uses electrochemical methods to investigate the redox reactions that occur on the surface of zerovalent iron in arsenic solutions. The effect of arsenic on the corrosion rate of zerovalent iron was investigated by analysis of Tafel diagrams for iron wire electrodes in anaerobic solutions with As(V) concentrations between 100 and 20,000 microg/L. As(V) reduction in the absence of surface oxides was investigated by analysis of chronoamperometry profiles for iron wire electrodes in solutions with As(V) concentrations ranging from 10000 to 106 microg/L. The effect of pH on As(V) reduction was investigated by analyses of chronopotentiometry profiles for iron wire electrodes at pH values of 2, 6.5, and 11. For freely corroding iron, the presence of As(III) and As(V) decreased the iron corrosion rate by a factor of 5 as compared to that in a 3 mM CaSO4 blank electrolyte solution. The decrease in corrosion rate was independent of the arsenic concentration and was due to the blocking of cathodic sites for water reduction by arsenic compounds chemisorbed to the iron surface. The chronoamperometry and chronopotentiometry experiments showed that elevated pH and increased As(III) to As(V) ratios near the iron surface decreased the thermodynamic favorability for As(V) reduction. Therefore, reduction of As(V) occurred only at potentials that were significantly below the apparent equilibrium potentials based on bulk solution pH values and As(III) to As(V) ratios. The potentials required to reduce more than 1% of the As(V) to As(III) were below those that are obtainable in freely corroding iron media. This indicates that there will be minimal or no reduction of As(V) in iron media filters under conditions relevant to potable water treatment.  相似文献   

8.
Acid mine drainage (AMD), which is caused by the biological oxidation of sulfidic materials, frequently contains arsenic in the form of arsenite, As(III), and/or arsenate, As(V), along with much higher concentrations of dissolved iron. The present work is directed toward the removal of arsenic from synthetic AMD by raising the pH of the solution by electrochemical reduction of H+ to elemental hydrogen and coprecipitation of arsenic with iron(III) hydroxide, following aeration of the catholyte. Electrolysis was carried out at constant current using two-compartment cells separated with a cation exchange membrane. Four different AMD model systems were studied: Fe(III)/As(V), Fe(III)/As(III), Fe(II)/As(V), and Fe(II)/As(III) with the initial concentrations for Fe(III) 260 mg/L, Fe(II) 300 mg/L, As(V), and As(III) 8 mg/L. Essentially quantitative removal of arsenic and iron was achieved in all four systems, and the results were independent of whether the pH was adjusted electrochemically or by the addition of NaOH. Current efficiencies were approximately 85% when the pH of the effluent was 4-7. Residual concentrations of arsenic were close to the drinking water standard proposed by the World Health Organization (10 microg/L), far below the mine waste effluent standard (500 microg/L).  相似文献   

9.
Removal of arsenic(III) from groundwater by nanoscale zero-valent iron   总被引:3,自引:0,他引:3  
Nanoscale zero-valent iron (NZVI) was synthesized and tested for the removal of As(III), which is a highly toxic, mobile, and predominant arsenic species in anoxic groundwater. We used SEM-EDX, AFM, and XRD to characterize particle size, surface morphology, and corrosion layers formed on pristine NZVI and As(III)-treated NZVI. AFM results showed that particle size ranged from 1 to 120 nm. XRD and SEM results revealed that NZVI gradually converted to magnetite/maghemite corrosion products mixed with lepidocrocite over 60 d. Arsenic(III) adsorption kinetics were rapid and occurred on a scale of minutes following a pseudo-first-order rate expression with observed reaction rate constants (K(obs)) of 0.07-1.3 min(-1) (at varied NZVI concentration). These values are about 1000x higher than K(obs) literature values for As(III) adsorption on micron size ZVI. Batch experiments were performed to determine the feasibility of NZVI as an adsorbent for As(III) treatment in groundwater as affected by initial As(III) concentration and pH (pH 3-12). The maximum As(III) adsorption capacity in batch experiments calculated by Freundlich adsorption isotherm was 3.5 mg of As(III)/g of NZVI. Laser light scattering (electrophoretic mobility measurement) confirmed NZVI-As(III) inner-sphere surface complexation. The effects of competing anions showed HCO3-, H4SiO4(0), and H2P04(2-) are potential interferences in the As(III) adsorption reaction. Our results suggest that NZVI is a suitable candidate for both in-situ and ex-situ groundwater treatment due to its high reactivity.  相似文献   

10.
Green rusts, ferrous-ferric iron oxides, occur in many anaerobic soils and sediments and are highly reactive, making them important phases impacting the fate and transport of environmental contaminants. Despite their potential importance in environmental settings, reactions involving green rusts remain rather poorly described. Chromate is a widespread contaminant having deleterious impacts on plant and animal health; its fate may in part be controlled by green rust. Here we examine chromate reduction by a series of green rust phases and resolve the reaction kinetics at pH 7. The overall kinetics of the reactions are well described by the expression d[Cr(VI)]/dt = -k[Cr(VI)][GR], and this model was successfully used to predict rates of reaction at varying chromium concentrations. The rates of reduction are controlled by the concentration of ferrous iron, surface area, and chemical structure of the green rust including layer spacing. On a mass basis, green rust (GR) chloride is the most rapid reductant of Cr(VI) followed by GRCO3 and GRSO4, with pseudo-first-order rate coefficients (k(obs)) (with respect to Cr(VI) concentration) ranging from 1.22 x 10(-3) to 3.7 x 10(-2) s(-1). Chromium(III)-substituted magnetite and lepidocrocite were identified as the major oxidation products. The nature of the oxidation products appears to be independent of the anionic class of green rust, but their respective concentrations display a dependence on the initial GR. The mole fraction of Fe(III) in the Cr(x),Fe(1-x)(OH)3 x nH2O reaction product ranged from 17% to 68%, leading to a highly stabilized (low solubility) phase.  相似文献   

11.
Permeable reactive barriers employing iron as a reactive surface have received extensive attention. A remaining issue, however, relates to their longevity. As an integral part of a long-term column study conducted to examine the influence of inorganic cosolutes on iron reactivity toward chlorinated solvents and nitroaromatic compounds, Master Builder iron grains were characterized via scanning and transmission electron microscopy, electron energy loss spectroscopy (EELS), micro-Raman spectroscopy, and X-ray diffraction. Prior to exposure to carbonate solutions, the iron grains were covered by a surface scale that consisted of fayalite (Fe2SiO4), wüstite (FeO), magnetite (Fe3O4), maghemite (gamma-Fe2O3), and graphite. After 1100 days of exposure to solutions containing carbonate, other inorganic solutes, and organic contaminants, the wüstite, fayalite, and graphite of the original scale partially dissolved, and magnetite and iron carbonate hydroxide (Fe3(OH)2.2CO3) precipitated on top of the scale. Raman results indicate the presence of green rust (e.g., [Fe4(2+)Fe2(3+)(OH)12]-[CO3 x 2H2O]) toward the column outlet after 308 days of operation, although this mineral phase disappears at longer operation times. Grains extracted from a column exposed to a high concentration (20 mM) of sodium bicarbonate were more extensively weathered than those from columns exposed to 2 mM sodium bicarbonate. An iron carbonate hydroxide layer up to 100 microm thick was observed. Even though EELS analysis of iron carbonate hydroxide indicates that this is a redox-active phase, the thickness of this layer is presumed responsible for the previously observed decline in the reactivity of this column relative to low-bicarbonate columns. A silica-containing feed resulted in reduced reactivity toward TCE. Grains from this column had a strong enrichment of silicon in the precipitates, although no distinct silica-containing mineral phases were identified. The substitution of 2 mM calcium carbonate for 2 mM sodium bicarbonate in the feed did not produce a measurable reactivity loss, asthe discrete calcium carbonate precipitates that formed in this system did not severely restrict access to the reactive surface.  相似文献   

12.
Photoinduced oxidation of arsenite to arsenate in the presence of goethite   总被引:2,自引:0,他引:2  
The photochemistry of an aqueous suspension of goethite in the presence of arsenite (As(III)) was investigated with X-ray absorption near edge structure (XANES) spectroscopy and solution-phase analysis. Irradiation of the arsenite/goethite under conditions where dissolved oxygen was present in solution led to the presence of arsenate (As(V)) product adsorbed on goethite and in solution. Under anoxic conditions (absence of dissolved oxygen), As(III) oxidation occurred, but the As(V) product was largely restricted to the goethite surface. In this circumstance, however, there was a significant amount of ferrous iron release, in stark contrast to the As(III) oxidation reaction in the presence of dissolved oxygen. Results suggested that in the oxic environment ferrous iron, which formed via the photoinduced oxidation of As(III) in the presence of goethite, was heterogeneously oxidized to ferric iron by dissolved oxygen. It is likely that aqueous reactive oxygen species formed during this process led to the further oxidation of As(III) in solution. Results from the current study for As(III)/goethite also were compared to results from a prior study of the photochemistry of As(III) in the presence of another iron oxyhydroxide, ferrihydrite. The comparison showed that at pH 5 and 2 h of light exposure the instantaneous rate of aqueous-phase As(V) formation in the presence of goethite (12.4 × 10(-5) M s(-1) m(-2)) was significantly faster than in the presence of ferrihydrite (6.73 × 10(-6) M s(-1) m(-2)). It was proposed that this increased rate of ferrous iron oxidation in the presence of goethite and dissolved oxygen was the primary reason for the higher As(III) oxidation rate when compared to the As(III)/ferrihydrite system. The surface area-normalized pseudo-first-order rate constant, for example, associated with the heterogeneous oxidation of Fe(II) by dissolved oxygen in the presence of goethite (1.9 × 10(-6) L s(-1) m(-2)) was experimentally determined to be considerably higher than if ferrihydrite was present (2.0 × 10(-7) L s(-1) m(-2)) at a solution pH of 5.  相似文献   

13.
Kinetics of Cr(VI) reduction by carbonate green rust   总被引:1,自引:0,他引:1  
The kinetics of Cr(VI) reduction to Cr(III) by carbonate green rust were studied for a range of reactant concentrations and pH values. Carbonate green rust, [FeII4FeIII2(OH)12][4H2O x CO3], was synthesized by induced hydrolysis (i.e., coprecipitation) of an Fe(ll)/Fe(III) solution held at a constant pH of 8. An average specific surface area of 47 +/- 7 m2 g(-1) was measured for five separate batches of freeze-dried green rust precipitate. Heterogeneous reduction by Fe(II) associated with the carbonate green rust appears to be the dominant pathway controlling Cr(VI) loss from solution. The apparent stoichiometry of the reaction between ferrous iron associated with green rust ([Fe(II)GR]) and Cr(VI) was slightly higherthan the expected 3:1 ratio, possibly due to the presence of other oxidants, such as oxygen, protons, or interlayer carbonate ions. The rate of Cr(VI) reduction was proportional to the green rust surface area concentration, and psuedo-first-order rate coefficients (kobs) ranging from 1.2 x 10(-3) to 11.2 x 10(-3) s(-1) were determined. The effect of pH was small with a 5-fold decrease in rate with increasing pH (from 5.0 to 9.0). At low Cr(VI) concentrations (<200 microM), the rate of reaction was first order with respect to Cr(VI) concentration, whereas, at high Cr(VI) concentrations, rates appearto deviate from first-order kinetics and approach a constant value. Estimated amounts of surface Fe(II) and total Fe(II) suggest that the deviation from first-order kinetics observed at higher Cr(VI) concentrations and the 50-fold decrease in rate observed upon three sequential exposures to Cr(VI) is due to exhaustion of available Fe(II).  相似文献   

14.
The objective of this research was to determine if Fe(II)-bearing iron oxides generate ferric hydroxides at sufficient rates for removing low levels of arsenic in packed-bed reactors, while at the same time avoiding excessive oxide production that contributes to bed clogging in oxygenated waters. Column experiments were performed to determine the effectiveness of three media for arsenic removal over a range in empty bed contact times, influent arsenic concentrations, dissolved oxygen (DO) levels, and solution pH values. Corrosion rates of the media as a function of the water composition were determined using batch and electrochemical methods. Rates of arsenic removal were first order in the As(V) concentration and were greater for media with higher corrosion rates. As(V) removal increased with increasing DO levels primarily due to faster oxidation of the Fe2+ released by media corrosion. To obtain measurable amounts of arsenic removal in 15 mM NaCl electrolyte solutions containing 50 microg/L As(V), the rate of Fe2+ released by the media needed to be at least 15 times greater than the As(V) feed rate into the column. In waters containing 30 mg/L of silica and 50 microg/L of As(V), measurable amounts of arsenic removal were obtained only for Fe2+ release rates that were at least 200 times greater than the As(V) feed rate. Although all columns showed losses in hydraulic conductivity overthe course of 90 days of operation, the conductivity values remained high, and the losses could be reversed by backwashing the media. The reaction products produced by the media in domestic tap water had average As-to-Fe ratios that were approximately 25% higher than those for a commercially available adsorbent.  相似文献   

15.
Mineralogical examination, using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy, was conducted on the Fe0-bearing reactive materials derived from long-term column experiments undertaken to assess the treatment capacity of Fe0 under different geochemical conditions. The columns received either deionized water or solutions of differing dissolved calcium carbonate concentrations, together either with trichloroethene (TCE) or hexavalent chromium (Cr(VI)). The major reaction product in the columns receiving deionized water was magnetite-maghemite, and for the columns receiving dissolved calcium carbonate, the main products were iron hydroxy carbonate and aragonite. Replacement of Fe0 by reaction products occurred mainly at the edges of the Fe0 particles, and penetrative replacement was focused along cracks and along and around graphitic inclusions. Fibrous or flake-shaped iron hydroxy carbonate mostly replaced the edges of the Fe0 particles. Aragonite had needle-shaped morphology, and some occurred as clusters of crystals. Aragonite was deposited on iron hydroxy carbonate, thus providing at least a partial armoring effect. The mineral was also observed to cement groups of Fe0 particles into compact aggregates. The Cr was present mostly as Cr(III) in Cr(III)-Fe(III) (oxy)hydroxides and in trace amounts in iron hydroxy carbonate.  相似文献   

16.
Previous studies have shown that the corrosion of zerovalent iron (ZVI) by oxygen (O(2)) via the Fenton reaction can lead to the oxidation of various organic and inorganic compounds. However, the nature of the oxidants involved (i.e., ferryl ion (Fe(IV)) versus hydroxyl radical (HO(?))) is still a controversial issue. In this work, we reevaluated the relative importance of these oxidants and their role in As(III) oxidation during the corrosion of nanoscale ZVI (nZVI) in air-saturated water. It was shown that Fe(IV) species could react with sulfoxides (e.g., dimethyl sulfoxide, methyl phenyl sulfoxide, and methyl p-tolyl sulfoxide) through a 2-electron transfer step producing corresponding sulfones, which markedly differed from their HO(?)-involved products. When using these sulfoxides as probe compounds, the formation of oxidation products indicative of HO(?) but no generation of sulfone products supporting Fe(IV) participation were observed in the nZVI/O(2) system over a wide pH range. As(III) could be completely or partially oxidized by nZVI in air-saturated water. Addition of scavengers for solution-phase HO(?) and/or Fe(IV) quenched As(III) oxidation at acidic pH but had little effect as solution pH increased, highlighting the importance of the heterogeneous iron surface reactions for As(III) oxidation at circumneutral pH.  相似文献   

17.
We investigated the stoichiometry, kinetics, and mechanism of arsenite [As(III)] oxidation by ferrate [Fe(VI)] and performed arsenic removal tests using Fe(VI) as both an oxidant and a coagulant. As(III) was oxidized to As(V) (arsenate) by Fe(VI), with a stoichiometry of 3:2 [As(III):Fe(VI)]. Kinetic studies showed that the reaction of As(III) with Fe(VI) was first-order with respect to both reactants, and its observed second-order rate constant at 25 degrees C decreased nonlinearly from (3.54 +/- 0.24) x 10(5) to (1.23 +/- 0.01) x 10(3) M(-1) s(-1) with an increase of pH from 8.4 to 12.9. A reaction mechanism by oxygen transfer has been proposed for the oxidation of As(III) by Fe(VI). Arsenic removal tests with river water showed that, with minimum 2.0 mg L(-1) Fe(VI), the arsenic concentration can be lowered from an initial 517 to below 50 microg L(-1), which is the regulation level for As in Bangladesh. From this result, Fe(VI) was demonstrated to be very effective in the removal of arsenic species from water at a relatively low dose level (2.0 mg L(-1)). In addition, the combined use of a small amount of Fe(VI) (below 0.5 mg L(-1)) and Fe(III) as a major coagulant was found to be a practical and effective method for arsenic removal.  相似文献   

18.
The effect of precipitates on the reactivity of iron metal (Fe0) with 1,1,1-trichloroethane (TCA) was studied in batch systems designed to model groundwaters that contain dissolved carbonate species (i.e., C(IV)). At representative concentrations for high-C(IV) groundwaters (approximately 10(-2) M), the pH in batch reactors containing Fe0 was effectively buffered until most of the aqueous C(IV) precipitated. The precipitate was mainly FeCO3 (siderite) but may also have included some carbonate green rust. Exposure of the Fe0 to dissolved C(IV) accelerated reduction of TCA, and the products formed under these conditions consisted mainly of ethane and ethene, with minor amounts of several butenes. The kinetics of TCA reduction were first-order when C(IV)-enhanced corrosion predominated but showed mixed-order kinetics (zero- and first-order) in experiments performed with passivated Fe0 (i.e., before the onset of pitting corrosion and after repassivation by precipitation of FeCO3). All these data were described by fitting a Michaelis-Menten-type kinetic model and approximating the first-order rate constant as the ratio of the maximum reaction rate (Vm) and the concentration of TCA at half of the maximum rate (K(1/2)). The decrease in Vm/K(1/2) with increasing C(IV) exposure time was fit to a heuristic model assuming proportionality between changes in TCA reduction rate and changes in surface coverage with FeCO3.  相似文献   

19.
Solid-phase associations of chromium were examined in core materials collected from a full-scale, zerovalent iron permeable reactive barrier (PRB) at the U.S. Coast Guard Support Center located near Elizabeth City, NC. The PRB was installed in 1996 to treat groundwater contaminated with hexavalent chromium. After eight years of operation, the PRB remains effective at reducing concentrations of Cr from average values >1500 microg L(-1) in groundwater hydraulically upgradient of the PRB to values <1 microg L(-1) in groundwater within and hydraulically downgradient of the PRB. Chromium removal from groundwater occurs at the leading edge of the PRB and also within the aquifer immediately upgradient of the PRB. These regions also witness the greatest amount of secondary mineral formation due to steep geochemical gradients that result from the corrosion of zerovalent iron. X-ray absorption near-edge structure (XANES) spectroscopy indicated that chromium is predominantly in the trivalent oxidation state, confirming that reductive processes are responsible for Cr sequestration. XANES spectra and microscopy results suggest that Cr is, in part, associated with iron sulfide grains formed as a consequence of microbially mediated sulfate reduction in and around the PRB. Results of this study provide evidence that secondary iron-bearing mineral products may enhance the capacity of zerovalent iron systems to remediate Cr in groundwater, either through redox reactions at the mineral-water interface or by the release of Fe(II) to solution via mineral dissolution and/or metal corrosion.  相似文献   

20.
Several recent investigations have shown encouraging potential for the removal of arsenic (As) from groundwater by granular zerovalent iron (Fe0). In contrast to previous studies conducted, we have investigated the applicability of this method and the nature of As bonding under conditions with dissolved sulfide. Three column tests were performed over the period of 1 year using solutions with either As(V) or As(II) (2-200 mg/L) in the input solution. Arsenic outflow concentrations decreased from initially 30-100 microg/L to concentrations of below 1 microg/L with time. XANES (X-ray absorptions near edge structure) and EXAFS (expanded X-ray absorption fine structure) spectra indicated that As in the solid phase is not only directly coordinated with oxygen, as is the case in adsorbed or coprecipitated arsenite and arsenate. Samples with high sulfur content showed additional bonding, for which Fourier transformations of EXAFS data exhibited a peak between 2.2 and 2.4 A. This bonding most likely originated from the direct coordination of sulfur or iron with As, which was incorporated in iron sulfides orfrom adsorbed thioarsenites. The formation of this sulfide bonding supports the removal of As by Fe0 because sulfide production by microbial sulfate reduction is ubiquitous in permeable reactive barriers composed of Fe0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号