首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
基于外加热源再生性能测试台架,研究了不同再生温度和不同来流流量对柴油机颗粒过滤器(diesel particulate filter,DPF)出口颗粒排放的影响。试验结果表明:加载量为2.5g/L时,DPF出口颗粒物出现一个颗粒数浓度波峰;加载量为5.0g/L时,DPF出口颗粒物出现两个数量浓度波峰。相同来流流量下,再生效率和总质量浓度随着再生温度的增加而增加;升温阶段出口颗粒物以核模态为主;再生阶段时,内部出现温度波峰且出口颗粒物以50nm以上聚集态颗粒为主。相同再生温度下,加载量为2.5g/L时再生效率和总质量浓度随着来流流量的增加而增加,升温和再生阶段出口颗粒物均以核模态为主;加载量为5.0g/L时再生效率和总质量浓度随来流流量的增加呈现先增加后减少的趋势,升温阶段出口颗粒物以核模态为主,再生阶段在大流量时有部分聚集态颗粒物排出。  相似文献   

2.
柴油机颗粒物捕集器(DPF)热再生发生时,其内部温度受DPF碳载量、排气温度和排气流量等影响,在特殊运行工况下具有较强非受控特性.为避免非受控再生引起的DPF失效风险,确保安全和可靠再生,通过降怠速(DTI)再生方式探讨了一种确定DPF安全再生温度的试验方法,得到安全再生温度曲线.针对DPF热再生过程中温度控制的大滞后特性,研究了一种采用发动机排气温度和排气流量作为增益补偿的优化热再生温度控制结构,并进行了控制算法的仿真分析和整车道路试验验证.结果表明:再生过程中对实际排气温度控制的超调量小于3%,稳态控制误差小于20℃,为促进DPF的安全和高效率再生提供了参考.  相似文献   

3.
基于AVL-Fire软件建立正六边形和四边形孔道结构柴油机颗粒捕集器(diesel particulate filter,DPF)模型,对不同排气温度、排气质量流量、碳烟负载下2种孔道结构的DPF压降特性、碳烟再生特性进行仿真分析和对比.结果表明:相同排气质量流量下,2种孔道的DPF压降随碳载量和排气温度升高而增大;六...  相似文献   

4.
基于再生性能测试台架,采用便携式固体颗粒物计数仪(Nanomet3)和气体分析仪,研究了不同再生温度与来流流量下柴油机颗粒捕集器(DPF)再生时出口气体和颗粒的排放特性.结果表明:DPF再生存在快速再生期,随着再生温度升高,快速再生期的时间缩短,使DPF出口的CO和CO_2体积分数增加、排放的积聚态颗粒物增加且再生效率和效能比提高.随着来流流量增加,快速再生期的时间延长,DPF出口的CO和CO_2体积分数减少.在来流流量为25.2 g/s时积聚态颗粒明显减少,但再生效率和效能比也最低.根据出口气体排放情况可以清晰反映DPF的再生情况,为再生策略制定提供重要的试验参考.  相似文献   

5.
在标定柴油机颗粒过滤器(DPF)再生温度的过程中,需要掌握DPF载体内的温度分布情况,然后根据温度分布及温度梯度,确定合适的再生目标温度及颗粒物的质量。通过试验的方法研究了回归怠速工况下的DPF载体温度场分布。结果表明:在怠速跌落工况(DTI)下,DPF载体内的最高温度基本出现在DPF载体径向中心线,且靠近DPF出口端面的位置处。在保持再生目标温度不变的条件下,DPF载体内的最高温度随着颗粒物质量的增加而升高,且到达最高温度点所需时间随着颗粒物的增加而缩短,然后当颗粒物增加到一定程度后,所需时间延长。  相似文献   

6.
基于外加热源再生性能测试台架,采用便携式固体颗粒物计数仪,研究soot沉积方式和颗粒可溶性有机组分(SOF)对柴油机颗粒捕集器(DPF)出口颗粒排放的影响.结果表明:无过渡段沉积后,DPF再生效率和总质量浓度随再生温度增加而增加,升温阶段出口颗粒物以核态为主,再生阶段DPF载体内部出现温度波峰且出口颗粒物以积聚态为主;添加50 cm过渡段沉积后,再生效率和总质量浓度同样随再生温度增加而增加,575℃以下再生时,升温和再生阶段出口颗粒物均以核态为主;575℃再生时,升温阶段颗粒物以核态为主,再生阶段以积聚态为主.SOF能促进DPF再生,其质量分数越高,DPF再生效率和总质量浓度越高,再生时出口颗粒物趋向于核态.  相似文献   

7.
运用AVL Boost软件建立了柴油机颗粒捕集器(DPF)模型,研究不同排气流量、温度及碳烟与灰分沉积量对非对称孔结构DPF压降特性的影响,并着重研究不同比例孔结构压降特性的差异.结果表明:排气质量流量增大,入口温度增大,不同比例孔结构的压降敏感性增大;当DPF内碳烟沉积量较少时,通过DPF的压降随着进/出口孔比例的增加而增大;随着碳烟沉积量的增多,进口较小的DPF结构压降升高率大;灰分在DPF壁面上的层状分布可以有效阻止碳烟深层捕集模式,降低DPF压降;使用非对称孔结构可以有效提高碳烟和灰分容量,降低DPF使用后期压降并延长DPF使用寿命.  相似文献   

8.
使用AVL-Fire软件建立柴油机微粒捕集器(DPF)三维计算模型,模拟DPF内的压降损失、深层微粒沉积、滤饼层微粒沉积和总微粒沉积特性.研究不同的排气流量、排气温度、初始灰分、灰分分布和微粒分布对DPF流通性与微粒加载特性的影响.结果表明:在微粒加载过程中(耂虑微粒再生的影响),DPF压降主要由壁面压降损失、微粒深层压降损失和微粒滤饼层压降损失组成,壁面压降损失呈现主要作用;当排气温度超过610 K时,壁面压降上升速率与深层压降上升速率之和大于滤饼层压降上升速率;升高排气温度和增加初始灰分,DPF压降损失增加;增加排气流量,深层微粒沉积速度和滤饼层微粒沉积速度加快,导致DPF压降损失增加;层状灰分对DPF压降损失升高作用大于堵塞段灰分;微粒在入口孔道表面呈抛物线分布(最小在DPF载体中间)时DPF压降最小;提高排气温度,有利于微粒与O_2迚行再生反应,但C与NO_2反应速率没有明显变化;当排气温度升高到710 K时,深层微粒沉积量先上升后下降,滤饼层微粒沉积量先保持不变后缓慢上升.  相似文献   

9.
DPF主动再生过程颗粒排放特性试验   总被引:1,自引:0,他引:1  
通过柴油发动机台架,采用后喷助燃的再生方式研究了主动再生过程中柴油机颗粒捕集器(DPF)出口的颗粒排放特性.结果表明:在主动再生期间,DPF出口颗粒浓度可增加2~3个数量级;在升温过程和再生过程,出口颗粒物数量浓度和粒径分布会因为碳载量和再生温度的共同作用而表现出差异;升温过程中,10 nm左右核模态颗粒物的排放主要由来流中颗粒物的穿透引起;再生过程中,10 nm左右核模态颗粒物的排放主要由碳烟颗粒层氧化反应生成的二次颗粒逃逸引起;整个再生期间,100 nm左右的积聚态颗粒物的排放主要由DPF载体内碳烟颗粒的逃逸引起.  相似文献   

10.
基于柴油机颗粒捕集器(DPF)再生性能测试台架,研究了入口过渡段长度、再生温度和再生时间对其再生性能的影响,同时也探索了DPF再生时出口颗粒物数量浓度排放性能的变化规律.结果表明:随着过渡段长度的增加,再生效率和效能比先保持不变,后逐渐降低,继而又趋于稳定,DPF内部最高温度与最大温度梯度均呈逐渐降低的趋势.再生温度的增加会使再生效率和效能比先缓慢增加而后迅速增加,但DPF内部最高温度和最大温度梯度呈线性增加的趋势.碳黑沉积较为均匀时,再生时间的增加能够在一定程度上提高再生效率,提高再生温度将会出现再生时间拐点,且随着再生温度的增加,再生时间拐点提前,拐点之后继续增加再生时间,再生效率增加量较小.DPF出口颗粒物总数量浓度和粒径分布与其内部沉积的碳黑分布特性具有较大关系,无过渡段时,DPF出口颗粒物总数量浓度呈先增加后减小的趋势,加装50 cm过渡段时,DPF出口颗粒物总数量浓度逐渐减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号