首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近10~15年来形成一个新的趋势:用α- 蒎烯制得的龙脑烯醛来合成香料物质。龙脑烯醛是用α-蒎烯的氧化物异构化制得的,同样也可用有机过酸氧化α-蒎烯生成。用龙脑  相似文献   

2.
广西产迷迭香挥发油化学成分的分析   总被引:4,自引:0,他引:4  
水蒸气蒸馏法提取广西百色地区迷迭香茎、叶中的挥发油,利用GC-MS联用仪进行了分析。共分离出36个峰,鉴定了其中31个化学成分,占总含量的97.08%。其主要成分为1,8-桉叶素、α-蒎烯、樟脑、莰烯、α-松油醇、乙酸龙脑酯及龙脑等。  相似文献   

3.
以α-蒎烯为原料,经环氧化和催化异构得到α-龙脑烯醛,再经氧化反应得到α-龙脑烯酸,进一步反应制得α-龙脑烯酸酰氯,然后与磺胺类化合物发生N-酰化反应,以32.8%~78.1%的收率合成了8个N-[4-(N-取代氨磺酰基)苯基]-α-龙脑烯酸酰胺化合物Ⅵ(a~h)。采用FTIR、1HNMR、13CNMR和ESI-MS对目标产物进行了结构表征。抑菌活性测试结果表明:在质量浓度50μg/m L下,目标化合物均显示了一定的抑菌活性,其中,化合物N-[p-(噻唑-2-基)氨基磺酰基苯基]-α-龙脑烯酸酰胺(Ⅵe)对小麦赤霉病菌和黄瓜枯萎病菌的抑制率分别为71.3%和68.0%。  相似文献   

4.
α-蒎烯环氧化制备2,3-环氧蒎烷的研究   总被引:2,自引:0,他引:2  
α-龙脑烯醛是合成檀香型香料的重要中间体 ,可以通过 α-蒎烯经环氧化和异构化得到。以α-蒎烯作起始原料 ,经过 α-蒎烯的环氧化生成 2 ,3-环氧蒎烷 ,再进行 2 ,3-环氧蒎烷的异构化得到α-龙脑烯醛。α-蒎烯是松节油的主要成分 ,因此研究由α-蒎烯制备α-龙脑烯醛是很有意义的。1  2 ,3-环氧蒎烷的制备1 .1 α-蒎烯的分离和提纯将松节油在常压下用简单蒸馏装置蒸馏 ,收集 1 5 4~ 1 5 8℃馏分 ,气相色谱分析 ,α-蒎烯含量为 90 %。将粗蒸α-蒎烯经分馏柱进行精馏 ,控制回流比为 4∶ 1 ,收集 1 5 6℃馏分 ,经气相色谱分析 ,α-蒎烯含量高…  相似文献   

5.
为了寻找天然产物基抑菌剂,以α-蒎烯(I)为原料,经环氧化和催化异构得到α-龙脑烯醛(III),进一步转化为α-龙脑烯酸(IV)和α-龙脑烯酸酰氯(V),然后与4-(N-取代氨磺酰基)苯胺类化合物发生N-酰化反应,以32.8~78.1%的收率合成得到8个N-(4-(N-取代氨磺酰基)苯基)-α-龙脑烯酸酰胺化合物VIa~VIh。采用FTIR、1HNMR、13CNMR和ESI-MS对目标产物进行结构表征。抑菌活性测试表明,在50 µg/mL质量浓度下,目标化合物显示一定的抑菌活性,其中化合物N-[4-(N-(噻唑-2-基)氨磺酰基)苯基]-α-龙脑烯酸酰胺(Ⅵe)对小麦赤霉病菌和黄瓜枯萎病菌的抑制率分别为71.3%(活性级别为B级)和68.0%(活性级别为C级)。  相似文献   

6.
采用GC-TOF/MS法分析英国产缬草油和中国贵州产缬草油中挥发性化学组分,通过质谱库检索、保留指数对化合物定性,比较两种缬草油之间差异。结果表明:从英国产缬草油检出51个化合物,主要成分为乙酸龙脑酯(39.660%)、莰烯(20.007%)、α-蒎烯(11.972%)、乙酸桃金娘烯酯(8.047%)、柠檬烯(3.105%)、龙脑(2.905%)等;从中国贵州产缬草油检出39个化合物,主要成分为乙酸龙脑酯(48.878%)、莰烯(19.146%)、α-蒎烯(6.755%)、乙酸桃金娘烯酯(5.659%)、龙脑(1.886%)、乙酸松油酯(1.245%)、柠檬烯(1.202%)等。两者有38个相同的化合物,其中以酯类和萜烯类化合物为主。该定性方法在复杂香料挥发性成分的定性中具有良好的应用前景。  相似文献   

7.
对用挥发油提取器提取得到的龙脑樟叶油进行真空抽滤,获得其脱脑油,再利用气相色谱-质谱联用仪和气相色谱仪对晶体及脱脑油进行了定性和定量分析。试验结果表明,真空抽滤是纯化龙脑樟叶油的可用方法之一;脱脑油中单萜类物质占总量的85.467%(相对质量分数),主要成分为为龙脑(23.813%)、D-苧烯(15.627%)、α-蒎烯(12.593%)、莰烯(6.309%)、β-月桂烯(6.213%)、乙酸龙脑酯(6.153%)和β-蒎烯(4.336%)等,可通过分馏对其加以利用。  相似文献   

8.
黄文榜  杨毅 《化学世界》1992,33(10):458-460
<正> 龙脑醛是合成环戊烯基类檀香的一种重要中间体。檀香是深受人们喜爱的木香香料,但由于天然檀香木精油资源有限,价格昂贵,世界各国都转向以α-蒎烯为原料,合成类似檀香香气的“合成檀香油”,其主要方法是将α-蒎烯经环氧化、异构化制成龙脑醛,再用龙脑醛和各种脂肪醛或酮进行缩合、还原反应,合成各种檀香油:  相似文献   

9.
松节油合成香料研究的进展   总被引:6,自引:0,他引:6  
本文概述了以松节油(α—蒎烯)为原料生产合成香料的工业状况,重点论述了从α—蒎烯制备冰片、樟脑以及经龙脑烯酸、二氢月桂烯、别罗勒烯、芳樟醇等几个重要中间体进而合成—系列香料的方法。  相似文献   

10.
对固体超强酸SO24-/Al2O3催化标题化合物作了研究,并对催化剂的制备及龙脑合成反应的最佳条件进行了探索。研究表明:当催化剂的焙烧温度为500℃,焙烧时间为3 h,催化剂的用量为α-蒎烯质量的4%,α-蒎烯与无水草酸的物质的量比为1∶0.2时,产率可达66.93%。产品中正龙脑含量可达85.43%,产品中正、异龙脑的含量比高达12.47∶1。  相似文献   

11.
The different analytical methods proposed for the evaluation of gypsum have been subjected to an experimental test. A combination method, consisting of a fusion with KHCO3 and determination of CaO by KMnO4 titration, the SO3 by Andrews method of titration of BaCrO4 has been found to give very reliable results with the least consumption of time.  相似文献   

12.
ONACCURACYOFANALYSISOFOFHYDROGEN1前言我公司目前应用的氢气纯度分析方法有两种,一种是爆炸反应法,另一种是焦性没食子酸吸收法。几年来,人们对两种分析方法的准确性曾有过褒贬不一的评论。这里我们也谈谈自己粗浅的观点。2爆炸法测定氢气纯度一定量的氢气样品与适量的空气之均匀混合物因反应后生成液体水而引起气体体积减少,减少的体积等于参加反应气体体积之和。其中l/3为氧气,2/3为氢气。根据氢气取样量和反应前后混气体体积之差,以及氢气在反应中的体积比例关系,可计算出样品的氢气纯度。计算公式式中:A一混…  相似文献   

13.
茶多酚提取方法进展   总被引:22,自引:0,他引:22  
葛宜掌  金红 《精细化工》1994,11(4):52-55
本文综述了国内外现有茶多酚提取方法的现状以及近期的研究进展,并对其优缺点进行了评价。这将有助于中低档茶的综合利用和茶多酚的进一步开发应用。  相似文献   

14.
A novel technique serves to monitor instantaneous rates of loss of a volatile solute from a suspended drop during drying. A highly sensitive electron capture detector is used to monitor concentrations of SF6 released into a flowing gas stream from a suspended, drying drop. Simultaneously, the appearance and morphological development of the drop are monitored with a video camera. This provides the wherewithal of relating instantaneous rates of loss of the volatile solute to particular events during the development of particle morphology.

Initial experiments have been carried out with drops of aqueous solutions of glucose, sucrose, maltodextrin and coffee extract. The results clearly display the onset of the volatiles-retentive selective diffusion phenomenon. There is also substantial loss of the volatile component later in the drying process, when the drops undergo repeated ex ansion, bursting and cratering due to the formation of internaf bubbles. These experiments appear to be the first quantitative demonstration of major losses accompanying changes in drop morphology.  相似文献   

15.
A model is developed for the sedimentation from a suspension of two particle species of unequal densities and of different sizes. The composition and the thickness of various layers in the sediments are predicted using graphical and analytical methods. The model predictions were in excellent agreement with experimental results, when the particle size ratio was ≥ 108. When size ratio of the particles was 2.60 and 4.31 the agreement occurred in about 50 percent of the cases.  相似文献   

16.
ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES   总被引:5,自引:0,他引:5  
Viscosity of Simple Soda-Silicate 500° to 1400°C Comparison of the results given by English with those of Washburn, Shelton and Libman, indicates a discrepancy in the absolute values of log10 viscosity amounting to 0.6, those of Washburn et al., being relatively too high. If correction for this is made, the isothermal curves of log10 viscosity as a function of soda content are smooth up to 50% Na2O, showing no inflection. The observations as a function of temperature T are all represented within accidental error by an equation of the type where all three constants vary regularly with the composition. Change of Viscosity of Glass (6SiO2, 2Na2O) due to Molecular Substitution of CaO, MgO and Al2O3 for Na2O The effect is clearly brought out by plotting (from the results of English) the change of log10η due to the substitution as a function of temperature. The curves each show a sharp bend at a temperature between 840° and 1050°C, which is designated the aggregation temperature Ta. If we divide these curves by the corresponding percentage substituted, we get curves for each oxide which are straight and parallel below the aggregation temperatures, the slopes (increase of change of log10η per 100°C) being −0.056 (CaO), −0.055 (MgO), −0.018 (A12O3) per per cent oxide substituted. For substitution of 1/2 molecule the slopes are −0.325 (CaO), −0.23 (MgO) and −0.18 (Al2O3) per 100°. At the aggregation temperature the change of log10η per per cent is a minimum, 0.03 to 0.06 for CaO, 0.12 for MgO, 0.07 for Al2O3. Evidence of Aggregation in Glasses, from viscosity Measurements The sharp bends in the plots of change of log10η due to substitution of an oxide for Na2O, suggest the beginning of molecular aggregation at these temperatures. These aggregation temperatures are close to the devitrification temperatures, but the effect on the viscosity curves cannot be due to actual devitrification since it does not change with time. Taking the aggregation temperatures as equal to devitrification temperatures, additional isotherms are roughly sketched into the equilibrium triangle of the system Na2O-CaO-SiO2. Change of Viscosity of Glass (4SiO2, 2Na2O) due to of Substitution of B2O3 for SiO2 The change of log10η (from the results of English) is plotted as a function of temperature, and also the change of log10η per per cent B2O3. The curves are more complex than for the substitution for Na2O.  相似文献   

17.
环氧树脂羟基值测定方法的研究   总被引:1,自引:0,他引:1  
利用乙酸酐、吡啶和浓硫酸混合的乙酰化试剂测定环氧树脂中羟基值含量的方法具有操作简便、滴定终点明显和分析结果误差小等优点。  相似文献   

18.
面对日益激烈的市场竞争,摩托车油箱外观质量越来越成为影响销售的因素之一。文章介绍了改进工艺后的油箱涂装,该涂装体系提高了油箱外观的丰满度,降低了油箱涂装的生产成本。  相似文献   

19.
几种针状焦性能对比   总被引:3,自引:1,他引:2  
针状焦分石油系和煤系两大类,这主要取决于针状焦的原料来源。在同一系列中由于原料不同和工艺条件不同 ,针状焦的各自性能也不相同。针状焦是生产超高功率石墨电极和高功率石墨电极的主要原料 ,针状焦的性能对石墨电极的质量有至关重要的影响。所以对针状焦性能以及其对石墨电极质量影响的研究十分必要的。以下是常用的几种进口针状焦和国产针状焦的性能对比。1原料性能分析对比原料试样包括4种针状焦 ,其中两种为进口针状焦:三菱针状焦和新日化针状焦;另两种为国产针状焦:鞍山针状焦和锦州针状焦。其中除锦州针状焦是石油系针状焦外…  相似文献   

20.
用两个形状指数表征粉煤灰颗粒形貌的研究   总被引:5,自引:0,他引:5  
陆厚根  马魁 《硅酸盐学报》1992,20(4):293-301
引用两个形状指数表征颗粒形状的概念,即先将颗粒形状近似为椭圆,再将椭圆图像分离:以圆为基准的颗粒宏观形状指数δ;以光滑椭圆为基准的颗粒轮廓凹凸度,即微观形状指数ζ。分析和发展了近似椭圆模型。并运用图像分析仪对粉煤灰、水泥样品进行实验。结果表明,粉煤灰颗粒的两个形状指数δ和ζ都大于水泥颗粒。证明粉煤灰颗粒的球形度、表面光滑度优于水泥,而且,随着粒径增大,δ和ζ呈下降趋势,表明磨制颗粒越粗。(?)粒形状越不规则。文中还运用近似椭圆模型再现了颗粒的模拟图像。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号