首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A novel CQDs/TiO2 hierarchical structure with enhanced photocatalytic properties was achieved by uniformly decorating urchin-like and yolk-shell TiO2 microspheres (UYTMs) with carbon quantum dots (CQDs) through an environmentally friendly hydrothermal process. The CQDs were firstly synthesized by the electrochemical method, and the TEM, Raman and PL characterizations strongly indicated that the as-prepared CQDs exhibited good dispersion, high crystallinity and unique up-conversion properties. The UYTMs synthesized by a NaOH-assisted hydrothermal process showed stable 3D hierarchical structure and large surface area, which was beneficial for light absorption and contacting with contamination. The good combination of CQDs and UYTMs was further successfully achieved during the hydrothermal process, and demonstrated by a series of tests. The photocatalytic experiments suggested that the CQDs/UYTMs exhibited better photocatalytic activities than the pure UYTMs and P25 under both visible and UV light irradiation. The CQDs/UYTMs combining with 6?wt% of CQDs showed the best photocatalytic efficiency, while excessive CQDs tended to inhibit the photocatalytic activity. According to the results and discussions, a possible mechanism in improving the photocatalytic efficiency of the CQDs/UYTMs is significantly proposed. The up-conversion property of CQDs can broaden the absorption spectrum of CQDs/UYTMs to the visible light. Moreover, the CQDs, as the electron reservoirs, are efficient to separate the electrons and holes, leading to an improved photocatalytic activity of CQDs/UYTMs.  相似文献   

2.
周进  丁玲  张婷  贺欢  李文兵  李享成  刘义 《精细化工》2020,37(4):702-709
采用高温热解法制备了石墨相氮化碳(g-C_3N_4),将其与碳量子点(CQDs)进行水热复合,得到g-C_3N_4/CQDs复合光催化剂。采用SEM、TEM、FTIR、XRD、UV-Vis/DRS、XPS、N2吸附-脱附等温线手段对制备的复合光催化剂进行了表征,以罗丹明B(Rh B)为模拟污染物,考察了g-C_3N_4/CQDs的可见光催化活性及稳定性。结果表明:与g-C_3N_4相比,g-C_3N_4/CQDs对可见光吸收强度增加,同时其吸收波长向可见光区发生红移;当CQDs含量为1.5%(以g-C_3N_4质量为基准)时,所得g-C_3N_4/CQDs光催化材料的催化活性最佳,其对Rh B的光催化降解率是54.5%,是g-C_3N_4光催化降解率的1.38倍,化学反应动力学拟合相关系数R2=0.9982。且g-C_3N_4/CQDs循环使用3次后,其催化降解率仍保持在50%以上。光催化机理研究表明,空穴(h+)、超氧阴离子自由基(·O2–)、过氧化氢分子(H2O2)和羟基自由基(·OH)都是光催化过程中的主要活性物种,四者氧化作用大小依次为:h+·O2– H2O2·OH。  相似文献   

3.
In this work, a simple, continuous and completely green method based on microflow technique is demonstrated for the synthesis of carbon quantum dots (CQDs) from diverse bio-based precursors. CQDs prepared from milk is illustrated as a case study to show the process feasibility. Crystalline fluorescent CQDs of 12.53% quantum yield and good stability are synthesized by the approach, even at 120°C. Systematic experiments further suggest their optical properties, bandgap energy, and fluorescence lifetime are closely related to the synthesis temperature. The maximum production rate of the CQDs was 51.1 mg/h at 180°C. Cytotoxicity and cellular imaging tests against 3T3 cells reveal the CQDs possess high biocompatibility, and can penetrate cell membranes and display bright fluorescence. The process versatility is investigated by expanding the precursor to watermelon juice, orange juice, and soy milk, indicating successful synthesis of small-sized CQDs of low cytotoxicity and strong photoluminescence by the technique.  相似文献   

4.
《Ceramics International》2022,48(24):35986-35999
CQDs (carbon quantum dots) have attracted a lot of attention in the field of photocatalysis due to its absorption of visible light, up-conversion luminescence, rich free groups on the surface and low cost. CQDs doped semiconductor can improve the photocatalytic reaction rate by the following three points: (1) adjust the band structure of photocatalyst; (2) facilitate the absorption of more visible light; (3) facilitate electron transfer and inhibits electron-hole recombination. In this review, the mechanism (photosensitizer, electron acceptor, up-conversion luminescence, etc.) and applications (photocatalytic degradation of organic pollutants, reduction of heavy metals, etc.) of CQDs in the field of photocatalysis are briefly introduced. Finally, the factors affecting the photocatalytic activity were summarized in order to adjust the reaction conditions and show high catalytic activity. It is hoped that this review can provide insights and inspiration for the development of CQDs in the field of photocatalysis.  相似文献   

5.
《Ceramics International》2023,49(20):32860-32867
The broadband near-infrared (NIR) phosphor converted light emitting diode (NIR pc-LED) has garnered unprecedented attention due to its crucial role in NIR applications. However, there remains a scarcity of efficient broadband NIR luminescence materials capable of emitting NIR light with wavelengths greater than 800 nm. This study reports the synthesis, crystal structure and photoluminescence (PL) properties for double perovskite Sr2ScTaO6:Cr3+ phosphors which exhibit a broadband NIR emission in the 650–1250 nm range, peaking at∼815 nm with the full width at half maximum (FWHM) of 161 nm. The observed broadband emission arises from two distinct Cr3+ centers, namely Sc3+ and Ta5+ octahedral sites within the Sr2ScTaO6 structure, as demonstrated by luminescence and decay kinetic analysis. A significant enhancement of the thermal stability and a remarkable broadening of the FWHM (from 161 to 275 nm) are achieved by employing Yb3+ co-doping strategy. The efficient energy transfer from Cr3+ to Yb3+ was confirmed through emission and excitation spectra, as well as luminescence decay measurements. Finally, Sr2ScTaO6:Cr3+-Yb3+ phosphor was integrated with a 470 nm blue LED chip to fabricate a NIR pc-LED device, and its potential application in night vision was evaluated.  相似文献   

6.
《Ceramics International》2023,49(1):309-322
Efficient ultra-broadband near-infrared (NIR) phosphors with long-wavelength (λmax > 850 nm) and wide full width at half-maximum (FWHM, >200 nm) have sparked tremendous interest, demonstrating their immense potential in NIR spectroscopy technology. Nevertheless, the development of NIR spectroscopy technology suffers from the restricted capability to efficiently emit the ultra-broadband NIR light. Herein, the synergetic enhancement strategy of heterogeneous substitution and compositional modulation was applied to create a novel Cr3+ doped long-wavelength ultra-broadband MgO: Cr3+, Ga3+ phosphor, which exhibited a long-wavelength ultra-broadband NIR emission (λmax = 850 nm) covering the range of 650–1300 nm on the electromagnetic spectrum with the FWHM of more than 200 nm under the excitation of 468 nm light. Furthermore, the tunable NIR emission from 818 nm to 862 nm with an optimized quantum efficiency of 30% was accomplished by the Ga3+ ions substitution and Cr3+ ions modulation. The phosphor exhibited remarkable thermal stability up to 100 °C, remaining 83% of the integrated emission intensity at room temperature. A prototype of the NIR phosphor-converted LED (pc-LED) demonstrated that the novel MgO: Cr3+, Ga3+ phosphor possessed a relatively strong NIR output power (15.05 mW at 100 mA driven current) with a photoelectric conversion efficiency of 5.53%, which is impressive compared with other Cr3+-doped long-wavelength ultra-broadband phosphors. This work not only proposes a novel long-wavelength ultra-broadband NIR phosphors with industrialization and great application prospect in night vision but highlights a synergetic enhancement strategy to effectively boost the performance of long-wavelength ultra-broadband NIR pc-LED light sources.  相似文献   

7.
Titanium dioxide (TiO2) has a strong oxidation effect when absorbing ultraviolet light. Therefore, when TiO2 is used as a light stabilizer in polyvinyl chloride (PVC), it will cause the photodegradation of PVC. Herein, carbon quantum dots (CQDs) coated TiO2 composite (TiO2@CQDs) was prepared by a one-step hydrothermal method. The prepared TiO2@CQDs were characterized by transmission electron microscopy (TEM), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The photostability of PVC film containing TiO2@CQDs was investigated via photodegradation conductivity test, weight loss rate test, and ultraviolet aging test. Due to the down-conversion effect of CQDs under ultraviolet light, its existence can alleviate the photoaging of PVC. In addition, the thermal stability of PVC containing TiO2@CQDs was studied by conductivity tests and oven thermal aging tests. The presence of CQDs significantly improved the thermal stability of PVC. Meanwhile, the HCl absorption capacity of CQDs could reach 30.8 mg/gcat. According to the DFT calculations, this high absorption capacity is attributed to the HCl immobilization effect via forming hydrogen bonds between HCl and the keto oxygen, carboxyl keto oxygen in CQDs. The hydroxyl group in CQDs could also combine ZnCl2 by forming a coordination bond.  相似文献   

8.
《Ceramics International》2017,43(12):8648-8654
TiO2 microspheres and TiO2/carbon quantum dots (CQDs) composites with different CQDs contents were successfully synthesized via solvothermal and in situ hydrothermal method. The structure and morphology of the prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscope (TEM). Results showed that carbon elements were successfully doped into the TiO2 lattice (C-TiO2) and CQDs were hybrid with C-TiO2 microspheres. The X-ray photoelectron spectroscope (XPS), valence band XPS (VB-XPS) and UV–vis diffuse reflectance spectra (DRS) analyses revealed that carbon doped into TiO2 microspheres could lead to local energy levels in the band structure and generate valence band tails to absorb visible light. The photocatalytic activities of these samples were evaluated by the photodegradation of Rhodamine B (RhB) under visible light irradiation. C-TiO2/CQDs samples presented an enhanced photocatalytic performance compared with pristine TiO2, which could be attributed to the present of CQDs, acting as adsorption sites for RhB molecules and charge separation centers to impede the recombination and prolong the life time of electron and hole pairs.  相似文献   

9.
The present study was aimed at determining the ability of near‐infrared (NIR) spectroscopy to in situ describe fat oxidation kinetics in three different cereal‐based products: salted crackers (20% saturated palm oil and lauric oil, sprayed on surface); healthy crackers (10% unsaturated rapeseed oil, homogeneously distributed inside the product matrix); and moist pasteurised Asian noodles (1.5% unsaturated rapeseed oil, sprayed on surface). Products were stored under accelerated oxidation conditions at 40 °C. Lipid oxidation rates were determined from peroxide value (PV) measurements. We observed no significant changes in PV for the dry crackers (3 meq/kg after 60 days), a slight linear increase in PV for the healthy crackers (40 meq/kg after 60 days), and a rapid increase for the Asian noodles (80 meq/kg after 20 days). The NIR spectra were recorded between 1000 and 2500 nm by using a Fourier Transform NIR spectrometer, using an external probe. Measurements were done directly in situ on the product, on the ground samples, and on the extracted fat phase. The analysis of NIR spectral data by PLS statistical methods demonstrated some correlation trends (R2 = 0.575–0.897; RMSEC = 17–55%) for the products having a significant increase in PV. It was not possible to propose predictive models to calculate the oxidation rate.  相似文献   

10.
以木屑为前驱物制备的活性炭为碳源,采用化学氧化法,用聚乙二醇2000进行表面钝化,制备出了水溶性的生物质基碳量子点。优化了CQDs的合成方法:0.3 g生物质基活性炭, 40 mL HAc-80 mL 30% H2O2 混合氧化剂,反应温度为100 ℃,反应时间为12 h。采用微波和超声结合法进行钝化,修复了CQDs的表面缺陷,荧光强度和量子产率均得到了提高。采用透射电子显微镜、紫外-可见吸收光谱仪、荧光分光光度计和傅里叶红外分光光度计进行表征,所合成的碳量子点发光性能优异、粒径小、分散性好,且无团聚现象。进一步考察了光照、温度和体系pH值对碳量子点性能的影响,结果表明,光稳定性好,抗光漂白性优异,荧光强度具有pH值依赖性,且易于表面功能化。  相似文献   

11.
为提高TiO2的可见光光电催化活性,本文用Bi2MoO6和碳量子点(CQDs)对TiO2纳米管阵列(TNA)进行了改性。以CQDs、Bi(NO3)3·5H2O和Na2MoO4为原料,通过简单的溶剂热法,在TNA中沉积了CQDs和Bi2MoO6,成功制备了新型Bi2MoO6@CQDs/TNA。扫描电镜(SEM)和元素mapping分析结果表明,CQDs和Bi2MoO6成功涂覆在TNA管壁上。通过在可见光下降解甲基橙(MO)溶液,评价了所制备的光催化剂的光电催化性能。结果显示,经3 h的光电催化降解,Bi2MoO6@CQDs/TNA对MO的去除率比Bi2MoO6/TNA高32%。CQDs优异的上转换光致发光(UCPL)性能促进了TiO2在可见光下被激发产生光生载流子,同时Bi2MoO6与TiO2的耦合抑制了光生载流子的复合,从而提高了Bi2MoO6@CQDs/TNA的光电催化活性。  相似文献   

12.
Previous work in our laboratory demonstrated that soybean oil oxidation, expressed as PV, can be determined using NIR transmission spectroscopy as an alternative to the official AOCS iodometric titration method. In the present study, a comparison of four peroxide analytical methods was conducted using oxidized soybean oil. The methods included the official AOCS iodometric titration, the newly developed NIR method, the PeroxySafe kit, and a ferrous xylenol orange (FOX) method, the latter two being colorimetric methods based on oxidation of iron. Five different commercially available soybean oils were exposed to fluorescent light to obtain PV levels of 0–20 meq/kg; periodic sampling was done to ensure having representative samples throughout the designated range. A total of 46 oil samples were analyzed. Statistical analysis of the data showed that the correlation coefficient (r) and standard deviation of differences (SDD) between the standard titration and NIR methods were r=0.991, SDD=0.72 meq/kg; between titration and the PeroxySafe kit were r=0.993, SDD=0.56 meq/kg; and between the standard titration and FOX method were r=0.975, SDD=2.3 meq/kg. The high correlations between the titration, NIR, and PeroxySafe kit data indicated that these methods were equivalent.  相似文献   

13.
Pure TiO2 and carbon quantum dots (CQDs)-doped TiO2 nanocomposite (CQDs/TiO2 nanocomposite) were prepared by a sol-gel approach for photocatalytic removal of Rhodamine B and cefradine. Analyses by Transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), UV–visible spectroscopy and X-ray powder diffraction (XRD) confirmed the successful formation of CQDs/TiO2 heterostructure. The as-prepared TiO2 and CQDs/TiO2 composite possessed small particles, spherical-like shape, and anatase crystal form. Meanwhile, Rhodamine B and cefradine were chosen to evaluate the photocatalytic activity of TiO2 and CQDs/TiO2 composite. Results revealed that with the facile decoration of CQDs, the absorption of photocatalyst was extended into visible light region and photocatalytic activity was improved in comparison with pure TiO2. Furthermore, the mechanism for the improvement of the photocatalytic performance of the composites was discussed on the basis of the results. CQDs play an important role in the photocatalytic process, due to their superior ability to extend the visible absorption and produce more electrons and electron–hole pairs for the degradation of pollutants. In all, the paper offers further insights into the development of CQDs/TiO2 nanocomposite as photocatalyst for the degradation of antibiotics.  相似文献   

14.
NIR spectroscopy was used successfully in our laboratory to monitor oxidation levels in vegetable oils. Calibration models were developed to measure PV in both soy and corn oils, using partial least squares (PLS) regression and forward stepwise multiple linear regression, from NIR transmission spectra. PV can be measured successfully in both corn and soy oils using a single calibration. The most successful calibration was based on PLS regression of first derivative spectra. When this calibration was applied to validation sample sets containing equal numbers of corn and soy oil samples, with PV ranging from 0 to 20 meq/kg, a correlation coefficient of 0.99 between titration and NIR values was obtained, with a standard error of prediction equal to 0.72 meq/kg. For both types of oil, changes occurred in the 2068 nm region of the NIR spectra as oxidation levels increased. These changes appear to be associated with the formation of hydroperoxides during oxidation of the oils.  相似文献   

15.
A near infrared (NIR) spectroscopic method was developed to measure peroxide value (PV) in crude palm oil (CPO). Calibration standards were prepared by oxidizing CPO in a fermentor at 90°C. A partial least squares (PLS) calibration model for predicting PV was developed based on the NIR spectral region from 1350 to 1480 nm with reference to single-point baseline at 1514 nm. The optimization of calibration factors was guided by the predicted residual error sum of squares test. The standard error of calibration obtained was 0.156 over the analytical range of 2.17–10.28 PV and the correlation coefficient (R 2) was 0.994. The method was validated with an independent set of samples which was prepared in the same manner on a different day. A linear relationship between the American Oil Chemists’ Society and the NIR methods was obtained with R 2 of 0.996 and standard error of performance of 0.17. This study has demonstrated that the prediction of PV in the NIR region is possible. The method developed is rapid, with total analysis time less than 2 min, is environmentally friendly, and its accuracy is generally good for quality control of CPO.  相似文献   

16.
A simple approach for the synthesis of fluorescent carbon dots (CQDs) has been developed by the hydrothermal treatment of gelatin in the presence only pure water. The as-synthesized CQDs were found to emit blue photoluminescence (PL) with a maximum quantum yield of 31.6%. Meanwhile, the CQDs exhibit excitation-dependent, pH-sensitive and up-converted PL properties. Importantly, these CQDs are demonstrated to be excellent bioimaging agents and fluorescent ink due to their stable emission, well dispersibility, low toxicity, long emission life time, and good compatibility with cells and macromolecules.  相似文献   

17.
Use of near-infrared (NIR) transmittance spectroscopy for rapid determination of the oxidation level in soybean oils (SBO) was investigated, and calibrations were developed for quantitative determination of peroxide value (PV), conjugated diene value (CD), and anisidine value (AV) of SBO. Partial least squares (PLS) regression and forward stepwise multiple linear regression were used to develop calibration models from spectral data in log 1/T, first derivative and second derivative of log 1/T formats for both 1- and 2-mm path lengths. The models were validated by comparing NIR results from independent sample sets to the values obtained by official methods. The spectral region from 1100 to 2200 nm was best for measuring oxidation when using a 2-mm path length. PLS regression using first-derivative spectra gave the best results for PV. For the validation sets, linear relationships were obtained for PV (r=0.99), and CD (r=0.95), compared with accepted reference procedures. However, measurement of AV by NIR was less successful than measurement of the other two indices of oxidation, especially for an external validation sample set. Results obtained in this study indicate that NIR spectroscopy is a useful technique for measuring oxidation in soybean oil.  相似文献   

18.
A facile one-step synthesis strategy has been developed for producing fluorescent carbon quantum dots (CQDs) from a kind of Chinese coal, Jincheng anthracite. Surface grafting of the CQDs was completed and systematically investigated by grafting with a series of organic amino molecules. It was found that the solubility and the optical properties of CQDs vary with and depend on its surface chemistry to some degree. Of organic amine-grafted coal-derived CQDs available now, ethylenediamine-grafted CQDs (EDA-CQDs) possess an obviously enhanced photoluminescence (PL) with the quantum yield (QY) as high as 18.6%, being an increase of 24.5 times in comparison with that of the pristine CQDs (0.73%), and have a capability of well dispersing within other polymer matrixes due to their good compatibility after amine-grafting. The hybrid monolith made of amine-grafted CQDs and polymer gelatin exhibits excellent PL properties even at a relatively high concentration of CQDs, indicative of great potential applications in various optical materials and devices.  相似文献   

19.
以富勒烯生产过程中的副产物炭灰为原料,利用酸回流法制备了表面含有羧基的碳量子点(CQDs)。将所制备的CQDs代替传统有机酸,发现其与十四烷基二甲基氧化胺(C_(14)DMAO)在水溶液中能形成蠕虫状胶束。考察了CQDs质量浓度、pH等对蠕虫状胶束流变性质的影响。结果表明,CQDs质量浓度的增加和溶液pH值的降低均有利于蠕虫状胶束的形成。利用低温透射电镜可以原位地观察到蠕虫状胶束和CQDs的存在。CQDs外围-COOH解离出的H~+可以使C_(14)DMAO质子化为C_(14)DMAOH~+,而C_(14)DMAOH~+与C_(14)DMAO之间形成的氢键是蠕虫状胶束形成的主要驱动力。以上结果表明,CQDs可以有效地诱导C_(14)DMAO形成蠕虫状胶束。  相似文献   

20.
Super broadband near-infrared (NIR) La3Ga5GeO14(LGGO): Cr3+ phosphor is in urgent needs for food testing. Unfortunately, it suffers from poor luminescence intensity in applications. Herein, the enhanced NIR luminescence performance can be realized in LGGO: Pr3+, Cr3+. The preferential crystallographic site of Cr3+ is validated on the basis of EPR spectrum, Rietveld refinement, and the first-principles DFT calculations. It is of great importance that the as-prepared phosphors can be excited by blue light (460 nm), which is beneficial to the application of blue-pumped LEDs. The critical distance of Pr3+ in LGGO host has been calculated by concentration-quenching method. For co-doped sample, it is observed that Cr3+ luminescence intensity enhancement by a factor of 3 can be achieved by doping Pr3+ owing to the energy transfer from Pr3+ to Cr3+. In addition, the introduction of Pr3+ can also improve the Cr3+ luminescence intensity at elevated temperature. Furthermore, using the optimized phosphor, a blue-based NIR phosphor-converted LEDs (NIR pc- LEDs) is fabricated, the forward voltage and the intensity of LED hardly change after thermal aging for 500 hours under high temperature/ high humidity condition, indicating its great reliability for NIR pc-LEDs. Therefore, LGGO:Pr3+, Cr3+ has great potential to serve as an attractive candidate in the application of blue light-excited NIR pc-LEDs in view of its capability for blue to enhanced broadband NIR conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号