首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
采用溶胶凝胶法制备了纳米ZnO粒子,通过XRD、SEM对所制备粉体颗粒的物相组成以及表面形貌进行表征,并且通过K-B纸片扩散法研究了抗菌性能,并对比了紫外光照前后的抗菌性能.结果表明,所制备的ZnO纳米粒子粒径约为200nm左右,显示优良的抗菌活性,未经紫外光照对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)的抑菌圈达到18~22mm,并对其机理做了初步探讨.  相似文献   

2.
磁性MnFe2O4/Ag复合纳米粒子的 制备与抑菌性能测试   总被引:1,自引:1,他引:0  
采用水热法合成了磁性空心MnFe2O4纳米粒子,然后用3-氨丙基三乙氧基硅烷对其表面进行了改性并吸附银离子,还原后成功制备了磁性MnFe2O4/Ag复合纳米粒子,并采用X射线衍射仪、透射电镜、磁强计、紫外光谱等对试样进行了表征.通过抑菌圈法对MnFe2O4/Ag复合纳米粒子的抑菌性能进行了测试.结果表明:磁性空心MnFe2O4纳米粒子没有抑菌性能;MnFe2O4/Ag对大肠杆菌的抑菌圈半径为1.78 cm,对金黄色葡萄球菌的抑菌圈半径为2.14 cm;MnFe2O4/Ag的抑菌持久性检测结果说明,所制备的载银磁性复合纳米粒子抑菌剂的稳定性较好,抑菌性能较持久.  相似文献   

3.
为获得具有优异抗菌和抗紫外性能的聚丙烯(PP)熔喷非织造材料,采用溶胶—凝胶法制备纳米氧化锌(ZnO),然后通过聚多巴胺(PDA)和聚乙烯亚胺(PEI)对PP进行表面亲水处理,获得改性PP熔喷材料(M-PP),通过浸渍法将壳聚糖(CS)和ZnO依次负载在改性后的M-PP上,制备得到ZnO/CS@M-PP复合熔喷材料;对ZnO/CS@M-PP复合熔喷材料进行形貌、结晶结构、抗菌和抗紫外性能分析。结果表明:通过溶胶—凝胶法制备的纳米ZnO为梭状形貌,长度为200~600 nm,结晶结构完整,ZnO与CS均匀分布在M-PP的表面;随着ZnO质量浓度的增加,ZnO/CS@M-PP复合熔喷材料对金黄色葡萄球菌和大肠杆菌的抑菌率随之提高,紫外线防护系数(UV protection factor, UPF)值也随之增加;当ZnO负载质量浓度为2 mg/mL时,ZnO/CS@M-PP复合熔喷材料对金黄色葡萄球菌和大肠杆菌的抑菌率可达99.99%,UPF值为139.97。  相似文献   

4.
通过静电纺丝的方法制备一种以二氧化钛(TiO2)为催化剂,聚乙烯醇(PVA)为载体的TiO2/PVA复合纳米纤维光催化材料。使用FE-SEM,XRD,Tg,FTIR对制备的TiO2/PVA复合纳米纤维膜进行了表征,并考察了其紫外光照射下光催化降解罗丹明B(Rh B)的能力。结果表明:制备的TiO2/PVA复合纳米纤维具有较高的光催化活性。  相似文献   

5.
用丝网印刷结合溶胶凝胶法制备了多孔TiO2薄膜,用溶液浸渍法制备了ZnO/TiO2复合薄膜;对薄膜的热处理制度、表面形貌、横断面结构、吸光度等进行了分析;组装电池,测试了电池的光电性能,结果表明:浸渍Zn(Ac)23 h,经过适当的热处理后,可以形成结晶良好,吸光度较好的ZnO/TiO2复合薄膜,电池的开路电压,短路电流以及光电转换效率均得到较大的提高。  相似文献   

6.
超临界流体干燥法制备的催化剂分散性好,颗粒尺寸小,对光的散射少,从而能更有效地利用光源.采用溶胶-凝胶法结合超临界流体干燥法,制备了纳米TiO2/ZnO/MMT复合光催化剂,并用TEM、XRD方法对其表征,以苯酚光催化降解为模型反应对所制备催化剂的催化性能进行了评价.结果表明催化剂平均粒径为18 nm,比表面积大,分散性好,TiO2全部为锐钛矿相;ZnO的最佳掺入量为0.5%;合光催化剂的活性高于单组分TiO2,6 h苯酚降解率达98.2%,COD化学耗氧量为94.3%.采用超临界干燥法直接制得的纳米复合催化剂,光催化活性与普通干燥法制备的光催化剂相比提高很多.  相似文献   

7.
为探讨银离子缓释的载体制备及载银抗菌剂的抑菌功能,采用浸渍提拉法制备银系无机抗菌材料,通过银离子的抗菌机理,调试银离子浓度对抗菌性能的影响.实验证明将TiO2与银、铜等离子复合发挥相互补充的抗菌作用,具有明显的抑菌功能.  相似文献   

8.
综述了纳米复合涂料的制备和表征方法,介绍了包括光效应、耐老化、隐身、抗菌以及高强度等新型纳米复合功能性涂料的制备原理与应用,并着重介绍了纳米TiO2、SiO2、SnO2、ZnO等粒子的特性对涂料性能的影响,最后讨论了纳米复合涂料研究中的一些问题和发展趋势.  相似文献   

9.
用丝网印刷结合溶胶凝胶法制备了多孔TiO2薄膜,用溶液浸渍法制备了ZnO/TiO2复合薄膜;对薄膜的热处理制度、表面形貌、横断面结构、吸光度等进行了分析;组装电池,测试了电池的光电性能,结果表明:浸渍Zn(Ac)23 h,经过适当的热处理后,可以形成结晶良好,吸光度较好的ZnO/TiO2复合薄膜,电池的开路电压,短路电流以及光电转换效率均得到较大的提高.  相似文献   

10.
铁磁性Fe3O4负载TiO2纳米粒子的制备表征及光催化活性   总被引:1,自引:0,他引:1  
以FeSO4·7H2O和Degussa P25型TiO2(P25 TiO2)为原料,通过原位生长法制备了具有高催化活性及铁磁性的Fe3O4负载TiO2催化剂(Fe3O4/TiO2).采用高分辨透射电镜(HR-TEM),X射线衍射仪(XRD)和振动样品磁强计(VSM)对所得催化剂的结构和性能进行了表征.紫外光催化降解乙酸溶液的结果表明,Fe3O4/TiO2的催化活性是P25 TiO2的3倍左右.基于上述研究,构建了新型磁性定位光催化体系,通过对弱酸性黄G溶液催化降解的研究,表明即使在无搅拌的状态下,该复合粒子也具有较高的光催化活性,并且可以通过外界磁场有效地分离并加以回收利用,是较为理想的光催化剂.  相似文献   

11.
采用硅改性法对TiO2/ZnO复合粉体进行表面改性。通过在聚酯中添加改性TiO2/ZnO复合粉体形成共混体系,对TiO2/ZnO复合粉体的抗紫外性及其与聚酯共混纺丝后改性涤纶纤维的力学性能进行了研究。研究表明,经过表面改性后的改性剂最佳质量分数为0.1%,TiO2和ZnO粉体的添加量为1∶1时抗紫外线的效果最好,且粉体添加量越大,纤维的力学性能下降越多。  相似文献   

12.
纳米TiO2的制备及其抗菌性能研究   总被引:12,自引:0,他引:12  
以尿素为沉淀剂 ,采用均匀沉淀法制备出分散性好、粒径分布均匀的纳米 Ti O2 ,研究了粒径、光照对 Ti O2 粉体抗菌性能的影响  相似文献   

13.
以钛酸四丁酯为钛源,用溶胶-凝胶法制备了改性累托石/TiO2光催化剂,运用X射线衍射和扫描电镜对其进行了表征.结果表明,累托石结构中负载了纳米TiO2.以300 W紫外灯为光源,以亚甲基蓝为目标降解物,得到制备交联钠化累托石/TiO2复合材料的最佳条件是盐酸浓度为0.2 mol/L,TiO2与累托石添加比例为5 mmol/g,复合材料的煅烧温度为500℃.研究了累托石/TiO2光催化剂的光催化性能,当用紫外灯光照20m in,反应温度为30℃,溶液pH为6时,亚甲基蓝的去除率达到90%以上.  相似文献   

14.
采用溶胶-凝胶法制备了具有可见光响应的ZnO/TiO2催化剂。考察了煅烧温度、煅烧时间、ZnO掺杂量对ZnO/TiO2催化剂性能的影响及阳光下不同紫外线强度对ZnO/TiO2催化剂降解溴氨酸水溶液的影响。结果表明:当煅烧温度为400℃,煅烧时间为2h,ZnO掺杂比为1%时,催化剂性能较佳;紫外线指数为5,光照5h时,溴氨酸水溶液的褪色率达到100%,在太阳光直射下3h后,溴氨酸水溶液的褪色率为97.73%,TOC去除率为82.88%。  相似文献   

15.
棉织物水热法纳米二氧化钛表面改性   总被引:2,自引:0,他引:2  
采用水热合成技术,使用硫酸钛和尿素直接在棉织物纤维表面包覆纳米TiO2颗粒薄膜.借助SEM、XRD、FT-IR、DSC和TG对棉纤维改性前、后的表面形貌、结构和热学性能进行了表征,并测定了织物反射光谱、拉伸、吸水和光催化活性.研究结果表明,棉织物经过硫酸钛尿素水热改性之后,纤维表面包覆了一层锐钛矿型纳米TiO2颗粒薄膜,由平均粒径2.0 nm的纳米颗粒聚集成100 nm以上的球形颗粒,并通过物理吸附方式附着在纤维表面.改性后的织物热起始分解温度和吸热熔融峰温度均有所降低.具有抗紫外线能力和光催化活性,吸水性能也有所增强,但由于织物尺寸发生收缩,断裂强力有所减小,断裂伸长率有所增加.  相似文献   

16.
采用水热法合成了纯锐钛矿TiO_2纳米线,并以此为模板结合滴涂法制备了CH_3NH_3PbI_3/TiO_2异质结复合纳米线.首先通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)等分析测试手段对样品的结构和形貌进行表征.然后利用拉曼光谱对样品的分子结构进行了研究.最后通过采集紫外一可见一近红外(UV—Vis—NIR)吸收光谱,对样品的的光谱响应性能进行了分析.结果表明:CH_3NH_3PbI_3与TiO_2纳米线复合形成了异质结结构,此复合物作为光催化剂不但可以解决传统TiO_2体系吸收可见光谱带窄的缺点,将光谱范围从紫外扩展到了近红外,还可以减少光生电子与空穴复合机率,有利于提高光催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号