首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrodynamics and mass transfer in a large diameter bubble column (Dc 0.305 m), specifically, the effects of gas velocity and the presence of solids on the gas holdup structure, gas-liquid interfacial area, and volumetric mass transfer coefficients in viscous as well as low viscosity solutions are studied. The sulfite oxidation technique was employed to measure the gas-liquid interfacial area. Volumetric mass transfer coefficients were measured using a chemical method (sulfite oxidation) as well as physical absorption of oxygen from air, and the overall gas holdups were measured using the hydrostatic head technique. The effect of solids on the gas holdup structure was examined using the dynamic gas disengagement method. With the addition of polystyrene particles, the gas-liquid interfacial area decreased for low viscosity systems, whereas it increased for viscous systems. This was shown to be due to the effect of solids on bubble coalescence. The wettability characteristics of solid surfaces in the presence of different liquids have been suggested as the reason for the effect of solids on coalescence. Oil shale slurries presented a special case because of the mineral dissolution effect.  相似文献   

2.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kLa. The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kLa in the downflow bubble column. Correlations for a and kLa for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

3.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kL a . The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kL a in the downflow bubble column. Correlations for a and kL a for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

4.
The process intensification of interfacial area and reaction conditions in multi-phase systems are important issues in industrially scaled reactors. In order to investigate the intensifying effect of micro-interface system on gas-liquid mass transfer and reaction rate, the ammonium sulfite oxidation was selected as the research object. A systematic air forced oxidation experiment was carried out through the micro-interface intensification reactor (MIR) and the traditional bubble column reactor (BCR) under the same experiment platform and operating conditions. The bubble size distribution and overall gas holdup were measured by high-speed camera technology and differential pressure measurement, respectively. The experimental results showed that MIR obtained higher gas holdup because of the micro-interface structure, the interfacial area was increased by more than 10 times, the reaction rate increased by 56.8% averagely compared with BCR. The experimental conclusions provide certain data support for the industrial application of the multiphase reaction system of the micro-interface intensification reactor.  相似文献   

5.
亚硫酸铵微界面强化氧化特性研究   总被引:1,自引:0,他引:1  
杨国强  曾伟  罗华勋  杨高东  张志炳 《化工学报》2020,71(11):4918-4926
以亚硫酸铵水溶液的空气氧化为研究对象,考察了微界面强化对该体系传质与氧化过程的影响。在同一实验平台和操作工况下,对微界面强化与传统鼓泡塔氧化过程的传质和反应性能进行了实验研究。利用高速摄像与压差测量技术,分别对反应过程的空气气泡分布与气含率变化进行了测定。结果表明,相较于传统鼓泡塔空气氧化反应器,微界面强化氧化反应器以微界面体系取代了传统毫-厘米级宏界面,在不同盐离子浓度与氧化气量工况下均表现出了良好的强化效能。在微界面体系强化下,亚硫酸铵氧化过程气含率大幅提升,相界面积增加十余倍,反应速率平均提升56.8%,实验结论为微界面强化反应器的多相反应体系工业应用提供了一定的数据支撑。  相似文献   

6.
在-气升式内环流反应器中试验考察了非牛顿流体羧甲基纤维素钠(CMC)中的气泡聚并现象以及表面活性物质对液相体积传质系数的影响。结果表明,非牛顿流体中气-液传质效率随黏度的增加而降低,其原因是黏度增加使Taylor泡的尾流趋于稳定,降低了液相扰动,气泡间易聚并,从而气-液传质效率低。向非牛顿流体中添加醇类物质会影响气-液传质行为,对于聚合物含量低的流体,添加微量醇可以促进气-液传质,聚合物含量高的非牛顿流体,微量醇的加入反而不利于气-液间传质过程。非牛顿流体在ILAR上升管中的气含率随着黏度的增加变化不大,而下降管中的气含率有所提高。  相似文献   

7.
Counter current bubble columns have the feature that specific gas-liquid interfacial area and gas holdup are larger than those for standard and cocurrent bubble columns. In this study, three different flow regimes, churn-turbulent flow, bubble flow and bubble down-flow, have been observed in a counter-current bubble column and correlations of gas holdup and volumetric liquid-phase mass transfer coefficient have been proposed as functions of operating variables such as the superficial velocities of gas and liquid, the gas-liquid slip velocity and the liquid properties.  相似文献   

8.
The draft tube configuration significantly affected the performance of an airlift contactor. The multiple draft tube configuration was demonstrated to give a better gas-liquid mass transfer when compared with a conventional one-draft-tube system. The airlift with a larger number of draft tubes allowed a higher level of bubble entrainment, which rendered a high downcomer gas holdup. This resulted in a higher overall gas holdup in the contactor. Liquid velocity was also enhanced by increasing the number of draft tubes. The ratio between downcomer and riser cross sectional areas, A d /A r , had a great effect on the system performance, where a larger A d /A r led to a lower downcomer liquid velocity and smaller quantity of gas bubbles being dragged into the downcomer. This resulted in low gas holdup, and consequently, low gas-liquid interfacial mass transfer area, which led to a reduction in the overall volumetric mass transfer coefficient. The presence of salinity in the system drastically reduced the bubble size and subsequently led to an enhancement of gas entrainment within the system. As a result, higher gas holdups and gas-liquid interfacial area were observed, and hence, a higher rate of gas-liquid mass transfer was obtained.  相似文献   

9.
In many biological processes, increasing the rate of transport of a limiting nutrient can enhance the rate of product formation. In aerobic fermentation systems, the rate of oxygen transfer to the cells is usually the limiting factor. A key factor that influences oxygen transfer is bubble size distribution. The bubble sizes dictate the available interfacial area for gas-liquid mass transfer. Scale-up and design of bioreactors must meet oxygen transfer requirements while maintaining low shear rates and a controlled flow pattern. This is the motivation for the current work that captures multiphase hydrodynamics and simultaneously predicts the bubble size distribution.Bubbles break up and coalesce due to interactions with turbulent eddies, giving rise to a distribution of bubble sizes. These effects are included in the modeling approach by solving a population balance model with bubble breakage and coalescence. The population balance model was coupled to multiphase flow equations and solved using a commercial computational fluid mechanics code FLUENT 6. Gas holdup and volumetric mass transfer coefficients were predicted for different superficial velocities and compared to the experimental results of Kawase and Hashimoto (1996). The modeling results showed good agreement with experiment.  相似文献   

10.
Gas-liquid mass transfer in a bubble column in both the homogeneous and heterogeneous flow regimes was studied by numerical simulations with a CFD-PBM (computation fluid dynamics-population balance model) coupled model and a gas-liquid mass transfer model. In the CFD-PBM coupled model, the gas-liquid interfacial area a is calculated from the gas holdup and bubble size distribution. In this work, multiple mechanisms for bubble coalescence, including coalescence due to turbulent eddies, different bubble rise velocities and bubble wake entrainment, and for bubble breakup due to eddy collision and instability of large bubbles were considered. Previous studies show that these considerations are crucial for proper predictions of both the homogenous and the heterogeneous flow regimes. Many parameters may affect the mass transfer coefficient, including the bubble size distribution, bubble slip velocity, turbulent energy dissipation rate and bubble coalescence and breakup. These complex factors were quantitatively counted in the CFD-PBM coupled model. For the mass transfer coefficient kl, two typical models were compared, namely the eddy cell model in which kl depends on the turbulent energy dissipation rate, and the slip penetration model in which kl depends on the bubble size and bubble slip velocity. Reasonable predictions of kla were obtained with both models in a wide range of superficial gas velocity, with only a slight modification of the model constants. The simulation results show that CFD-PBM coupled model is an efficient method for predicting the hydrodynamics, bubble size distribution, interfacial area and gas-liquid mass transfer rate in a bubble column.  相似文献   

11.
Packed upflow bubble columns . Packed upflow bubble columns are used in the chemical industry, in biotechnology, and in waste-water purification. They are usually operated in the co-current mode and have various advantages, but also disadvantages, compared with empty bubble columns. This survey reports the current state-of-the-art in fluid dynamics (flow states, pressure drop, holdup and dispersion, bubble size and bubble rise velocity, interfacial area), mass and heat transfer (mass transfer coefficients at the gas/liquid and liquid/solids interface, heat transfer coefficients for fluid/solids and fluid/wall interfaces, effective thermal conductivity of the bulk solids through which flow occurs), flow models (continuum models, stage models, zone models), and other aspects of this type of multiphase reactor; gaps in our knowledge are also indicated.  相似文献   

12.
Electrochemical gas absorption or biotechnical purification processes using structured packing as electrode or as biological support, respectively, may operate in bubble columns in presence of suspended solids. In both systems the knowledge of mass transfer rates from the liquid to the packing is important for the design of equipment. In the present investigation, the fluid dynamic behavior of a simple bubble column and a bubble column containing small size particles, both in presence of structured packing, was studied. Furthermore, mass transfer coefficients between the liquid and the structured packing were obtained by the electrochemical method. The influence of physical properties of the liquid phase, gas flow rate, kind and concentration of the suspended particles on both gas holdup and mass transfer was investigated. Correlations of the experimental data of mass transfer using dimensionless groups were derived and compared to previous correlations. Similarity with a heat transfer expression already used in two-phase systems was found.  相似文献   

13.
Cocurrent and countercurrent absorption and desorption of CO2 in water was investigated in tall bubble columns (length 440 and 720 cm, diameter 15 and 20 cm, respectively). Operating conditions were applied which provided for high interphase mass transfer rates. Under these circumstances the relative gas holdup varies considerably with axial position whereas the mean bubble diameter measured at two points was found to be approximately constant. The measured data permit the calculation of local values of interfacial areas, superficial gas velocities, and frequency factors for bubble coalescence and break up. A dispersion model which takes into account the hydrostatic head and a variable gas velocity was applied to describe the measured concentration profiles in both phases. If increased mass transfer coefficients at the column bottom and measured local values of the hold up were used a striking agreement between experimental and predicted profiles could be obtained. The findings lead to a more sophisticated picture of the complex behaviour of gas-liquid dispersions at high interphase mass transfer rates.  相似文献   

14.
In chemical process engineering, fast gas-liquid reactions often suffer from an inefficient distribution of gas and therefore mixing and mass transfer performance. This study deals with the possibility of influencing the local gas holdup and bubble size distribution in a gas-liquid process using additively manufactured lattice structures (AMLS). The used measuring technique to study bubble size, velocity, and the local gas holdup is a photo-optical needle probe. By using AMLS, a significant radial homogenization of the local gas holdup and the mean bubble size is achieved. Furthermore, it can be demonstrated that the bubble size can be tailored by the geometry of the inserted structure. It is illustrated that the mean bubble velocities are lowered within the lattice resulting in a higher residence time of the dispersed phase with an impact on the mass transfer performance within the AMLS.  相似文献   

15.
搅拌反应器内三种桨型的气、液分散与相际传质特性研究   总被引:4,自引:0,他引:4  
本文以改进搅拌发酵罐的桨型为目的,对空气-水、空气-亚硫酸钠溶液系统就六平叶、弯叶、箭叶三种圆盘透平桨产生的气泡平均直径、气含率及容量传质系数的变化规律作了较为系统的研究。实验发现:相同单位体积功率、表观气速条件下,三种桨型各自产生的气泡平均直径相差不大;箭叶桨的气含率较低;六平叶圆盘透平桨具有最大的容量传质系数。  相似文献   

16.
采用溶氧法测量了三相循环流化床中液相溶氧浓度的轴向分布,并按轴向扩散模型处理实验数据,优化得到气液体积传质系数kLa,同时用光纤探头测量了体系中的气含率和气泡大小分布,计算得到了气液相界面积a和气液传质系数kL,并研究了主要操作条件(表观气速、表观液速和固含率)对气液传质系数的影响规律.  相似文献   

17.
剪切变稀体系同心双轴搅拌釜内的气液分散模拟   总被引:1,自引:0,他引:1  
气液搅拌设备因其良好的适用性被广泛应用于过程工业中。为更好地比较不同工况下剪切变稀体系中的气液分散情况,通过实验研究整体气含率和相对功耗确定适宜的转动模式,进而模拟研究表观气速、体系黏度、搅拌转速对气含率和气泡尺寸的影响。结果表明,相同功率下内外双桨反向旋转模式在理想气液分散条件下,相较于单轴内桨和内外双桨同向旋转模式具有更高的气含率和更好的气体泵送能力;表观气速的增加有利于气泡的均匀分散,但气泡尺寸也会随之增大;有效黏度的增加使得搅拌桨的影响区域变小,不利于气泡的均匀分散,气泡尺寸也随之增大;搅拌转速的增加使得循环涡流的影响区域变大,高气含率区不断扩大。  相似文献   

18.
This paper describes a new technique for concurrently evaluating the mass-transfer-effective bubble coalescence frequency and specific interfacial area of mechanically agitated gas-aqueous electrolyte solution dispersions by the chemical method. The technique is based on a model of mass-transfer-effective bubble interactions which permits computation of a mass transfer driving force correction factor. The latter is shown to be dependent on both the effective bubble coalescence frequency and the fractional depletion of the solute gas. The correction factor is applied to the experimentally-measurable exit gas composition in order to determine the relevant residence-time average driving force. Results are given for the effects of impeller rotational speed or mechanical agitation power, gas superficial velocity and total ionic strength on the mass-transfer-effective bubble coalescence frequency and specific interfacial area.  相似文献   

19.
Gas holdup structures in highly viscous glycerine and CMC solutions are studied in a 0.305 m diameter batch bubble column. The fractional gas holdups are determined using the dynamic gas disengagement method. Empirical correlations for the gas holdup based on data covering wide ranges of viscosities in Newtonian and pseudoplastic non-Newtonian solutions are presented. For highly viscous pseudoplastic solutions in small diameter columns, the gas holdup has a square root dependence on the diameter of the column. The absence of small bubbles is suggested to be a reason for the very low volumetric mass transfer coefficients in highly viscous solutions, reported in the literature.  相似文献   

20.
Gas holdup structures in highly viscous glycerine and CMC solutions are studied in a 0.305 m diameter batch bubble column. The fractional gas holdups are determined using the dynamic gas disengagement method. Empirical correlations for the gas holdup based on data covering wide ranges of viscosities in Newtonian and pseudoplastic non-Newtonian solutions are presented. For highly viscous pseudoplastic solutions in small diameter columns, the gas holdup has a square root dependence on the diameter of the column. The absence of small bubbles is suggested to be a reason for the very low volumetric mass transfer coefficients in highly viscous solutions, reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号