首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oil extraction of flakes and extrudates of high-oil (HO) corn was studied, using hexane as solvent. HO corn contained 19.5% oil, 70% of which was located in the germ. Microstructures of starchy endosperm and germ were analyzed by scanning electron and light microscopy. Conventionally extruded samples extracted faster and to a lower residual oil content than flakes and steam-injected extrudates. Ultrastructural disruption and cooking of conventionally extruded material was adequate to free the oil from the spherosomes and produce a porous pellet with a high proportion of “surface oil.” Encapsulation of the oil within a gelatinized starch matrix made it partly unavailable in steam-injected extrudate samples. Data presented for laboratory and pilot plant runs demonstrate that conventional extrusion is a promising pretreatment for solvent extraction of high-oil, starchy materials.  相似文献   

2.
Fractionation of squalene from amaranth seed oil   总被引:1,自引:0,他引:1  
Amaranth seed oil was fractionated in a bench-scale short-path distillation unit to obtain fractions rich in squalene. Fractionations were conducted with degummed amaranth oil, alkali-refined amaranth oil, and simulated amaranth oil. Squalene concentration was increased about sevenfold with a squalene recovery of 76.0% in the distillate when degummed amaranth oil was fractionated at 180°C and 3 mtorr vacuum. Free fatty acids codistilled with squalene, lowering the squalene content of the distillate, and resulted in a semisolid distillate at room temperature. Alkali-refining was subsequently used to reduce the free fatty acid content before fractionation. A simulated oil (7% squalene/93% soybean oil) and alkali-refined amaranth oil were fractionated at three temperatures (160, 170, and 180°C) and five vacuum settings (10, 100, 200, 400, and 600 mtorr). The highest squalene recoveries from simulated oil and alkali-refined amaranth oil were 73.4 and 67.8%, respectively, both at 180°C and 100 mtorr, which translates to 12.1-and 9.2-fold increases in squalene concentration, respectively. The squalene recovery of the alkali-refined amaranth oil at 180°C was not significantly different at 10 mtorr vs. 100 mtorr. The results of this study can be used as a component to assess the economic feasibility of fractionating amaranth seed for starch, oil, meal, and squalene.  相似文献   

3.
Rice bran is considered in Mexico as “waste”, useful only for feeds. As considerable amounts of oil are available in rice bran, it might be worthwhile to stabilize it and extract the edible oil before using it for feedstuffs. Precisely these oils are responsible for rice bran rapid deterioration, particularly in climatic conditions such as those prevalent in Mexico's tropical areas (high humidity and high temperature). This paper deals with the study of the effect of pH during extrusion of fresh rice bran in order to inactivate lipid‐breaking enzymes. Hydrochloric acid or calcium hydroxide, Ca(OH)2, were added at 0, 1, 5, 10% (dry basis), and moisture content of the bran samples was varied (20, 30, 40%, dry basis) in a 32 factorial design to corroborate its effect at acid and alkaline pH range. Free fatty acids (FFA) increase was the control variable. Extruded samples were stored at room temperature (between 20 and 28 °C) using a non‐extruded sample as control to assess the shelf life effects. Results indicate that in acid‐extruded samples, the increase in FFA concentration after 98 days was much less than in the unmodified‐pH or alkaline samples. The lowest FFA increase after 3 months of storage time was <10 mg FFA/g rice bran using extrusion with no water or chemicals added or using extrusion adding HCl, irrespective of the moisture content of rice bran.  相似文献   

4.
Scale-up of Enzyme-Assisted Aqueous Extraction Processing of Soybeans   总被引:1,自引:1,他引:0  
The effects of scaling-up enzyme-assisted aqueous extraction process (EAEP) using 2 kg of flaked and extruded soybeans as well as the effects of different extrusion and extraction conditions were evaluated. Standard single-stage EAEP at 1:10 solids-to-liquid ratio (SLR) was used to evaluate the effects of different extruder screw speeds and whether or not collets were extruded directly into water. Increasing extruder screw speed from 40 to 90 rpm improved oil extraction yield from 85 to 95%. Oil, protein, and solids extraction yields of 97, 86, and 78% were obtained when extruding directly into water and 95, 84, and 77% when not extruding into water. When not extruding into water, standard single-stage EAEP (1:10 SLR) yielded 95, 84, and 77% of total oil, protein, and solids extraction, respectively, and two-stage countercurrent EAEP (1:6 SLR) yielded 99, 94, and 83% total oil, protein, and solids extraction, respectively. These yields were similar to those previously obtained in the laboratory (0.08 kg soybeans), but higher oil contents were observed in the skim fractions produced at pilot-plant scale for both processes. Modifying processing parameters improved the oil distribution among the fractions, increasing oil yield in the cream fraction (from 76 to 86%) and reducing oil yield in the skim fraction (from 23 to 12%). Steady-state oil extraction was achieved after two 2-stage extractions. Two-stage countercurrent EAEP is particularly attractive due to reduced water usage compared to conventional single-stage extraction.  相似文献   

5.
提取方法对茶油中活性成分角鲨烯含量的影响   总被引:17,自引:0,他引:17  
采用不同的工艺和溶剂从油茶籽中提取茶油,并对经甲酯化处理的茶油进行气相色谱分析、GC-MS联用分析、标准物质共同色谱比对等方法,研究了不同的提取方法对茶油中生物活性物质角鲨烯含量的影响。结果表明,茶油中含有比较多的角鲨烯,其含量随提取方法而不同,直接压榨法、己烷提取法、石油醚提取法、丙酮提取法和三氯甲烷提取法等所得到的茶油中角鲨烯的含量分别为2.98%、7.62%、0.94%、0.29%和0.54%。  相似文献   

6.
The effects of two commercial endoproteases (Protex 6L and Protex 7L, Genencor Division of Danisco, Rochester, NY, USA) on the oil and protein extraction yields from extruded soybean flakes during enzyme-assisted aqueous extraction processing (EAEP) were evaluated. Oil and protein were distributed in three fractions generated by the EAEP: cream + free oil, skim and insolubles. Protex 6L was more effective for extracting free oil, protein and total solids than Protex 7L. Oil and protein extraction yields of 96 and 85%, respectively, were obtained using 0.5% Protex 6L. Enzymatic and pH treatments were evaluated to de-emulsify the oil-rich cream. Cream de-emulsification generated three fractions: free oil, an intermediate residual cream layer and an oil-lean second skim. Total cream de-emulsification was obtained when using 2.5% Protex 6L and pH 4.5. The extrusion treatment was particularly important for reducing trypsin inhibitor activity (TIA) in the protein-rich skim fraction. TIA reductions of 69 and 45% were obtained for EAEP skim (the predominant protein fraction) from extruded flakes and ground flakes, respectively. Protex 6L gave higher degrees of protein hydrolysis (most of the polypeptides being between 1,000 and 10,000 Da) than Protex 7L. Raffinose was not detected in the skim, while stachyose was eliminated by α-galactosidase treatment.  相似文献   

7.
Review on Recent Trends in Rice Bran Oil Processing   总被引:1,自引:0,他引:1  
Rice bran oil (RBO) is popular in several countries such as Japan, India, Korea, China and Indonesia as a cooking oil. It has been shown that RBO is an excellent cooking and salad oil due to its high smoke point and delicate flavor. The nutritional qualities and health effects of rice bran oil are also established. RBO is rich in unsaponifiable fraction (unsap), which contains the micronutrients like vitamin E complexes, gamma oryzanol, phytosterols, polyphenols and squalene. However, the high FFA and acetone-insoluble content of RBO made it difficult for processing. Therefore, in recent years, research interest has been growing in RBO processing to obtain good quality oil with low refining loss. This review article deals with detailed reports on RBO processing including membrane-based techniques from the production and quality point of view.  相似文献   

8.
Eleven winged bean accessions from Thailand were analyzed. Oil content ranged between 15 and 18%. Oleic and linoleic acids were the major fatty acids (62.5–64.5%) together with behenic (12.6–14.4%) and lignoceric acid (2.4–2.8%). Linolenic acid level was low and traces of 15-, 17- and 21-carbon acids (saturated and unsaturated) were found. No parinaric acid was detected. Campesterol, stigmasterol and β-sitosterol were the principal components of the unsaponifiable fraction. The extracted oil had a very low free fatty acid (FFA) content but was not completely liquid below 35 C. The refining of crude winged bean oil is reported. Oil produced by expeller had a strong, beany aroma but a negligible level of gums and a low level of FFA. Degumming and neutralizing were unnecessary; bleaching produced an attractive colored oil free from beany aroma. Crude solvent-extracted oils from whole and decorticated winged beans had appreciable contents of gums and higher FFA contents than expeller-produced oil. Laboratory refining demonstrated the strong interference on bleaching exerted by gums and FFA. Conventional refining by degumming, neutralizing, bleaching and deodorizing, and by physical refining produced high-quality oils having a good color, low FFA level and no taste or smell. The solid/liquid ratio of refined winged bean oil as a function of temperature was found to be unusual. Oil was extracted from whole and decorticated winged beans in a pilot solvent extraction plant designed to simulate a Rotocei. Winged bean flakes were not as mechanically strong as those from soybean but good oil extraction yields were obtained and a meal was produced having an oil content of less than 1% at 10% moisture. Whole winged beans were expelled in a small expeller (throughput 16.8 kg/hr). Cake was produced with a residual oil content of 3.3–5% in a single pass through the expeller.  相似文献   

9.
Flaking and extruding dehulled soybeans were evaluated as a means of enhancing oil extraction efficiency during enzyme-assisted aqueous processing of soybeans. Cellulase, protease, and their combination were evaluated for effectiveness in achieving high oil extraction recovery from extruded flakes. Aqueous extraction of extruded full-fat soy flakes gave 68% recovery of the total available oil without using enzymes. A 0.5% wt/wt protease treatment after flaking and extruding dehulled soybeans increased oil extraction recovery to 88% of the total available oil. Flaking and extruding enhanced protease hydrolysis of proteins freeing more oil. Treating extruded flakes with cellulase, however, did not enhance oil extraction either alone or in combination with protease. Discrepancies in oil extraction recoveries were encountered when merely considering crude free fat because some oil became bound to denatured protein during extrusion and/or sample drying. Bound fat was unavailable for determination by using the hexane extraction method, but was accounted for by using the acid hydrolysis method for total oil determination. Oil extraction recovery from extruded soybean flakes was affected by oil determination methods, which was not the case for unextruded full-fat soy flour.  相似文献   

10.
The physicochemical properties of Jatropha seed oil from 9 geographical origins and 24 candidate plus plants (CPPs) were evaluated. The yield of seed oil obtained by Soxhlet extraction using n-hexane as solvent varied from 40.0% (Malaysia) to 48.4% (Vietnam) among seeds from different origins and 32.1% (CPP-17) to 48.8% (CPP-01) (w/w) among CPPs. Density, specific gravity, and refractive index of oil showed very little differences among all the seed sources. Oil from Borneo had the highest free fatty acid (FFA) content (2.3%) and a South African sample had the lowest FFA (0.4%), as oleic acids. Seed oil of CPP-13 had the highest FFA content (1.2%) and seed oil of CPP-17 the lowest (0.3%). Most of the CPPs in this study had an FFA content of less than 1%. Jatropha seed oil of Philippine origin had the highest iodine value (187.3 mg/g oil) and seed oil from Borneo the lowest (83.5 mg/g oil). The lowest saponification values were obtained from seed oil of Philippine origin (189.5 mg KOH/g) and CPP-22 (183.3 mg KOH/g oil) from Malaysia. The maximum higher heating value (40.3 MJ/kg) was obtained from seed oil from Borneo. The cetane numbers range from 25.4 (Indonesia) to 56.0 (Borneo) among the oils of base material and 46.4 (CPP-15) to 53.7 (CPP-06) among CPPs. This study gives basic information of relevance for biodiesel production using Jatropha seeds from various origins.  相似文献   

11.
Hamsters were fed for 4 weeks on four different diets: control (C) (balanced diet containing 20 % corn oil as the lipid source), hypercholesterolemic (H) (identical to C but containing 12 % coconut oil, 8 % corn oil and 0.1 % cholesterol as the lipid source), amaranth oil (A) (identical to H without corn oil but with amaranth oil), and squalene (S) (identical to H but admixed with squalene in the ratio found in amaranth oil). There were no significant differences in lipid profile, and in the cholesterol excreted in the animals’ feces from amaranth oil (A) and squalene (S) groups. Fecal excretion of bile acids was greater in the amaranth oil (A) and squalene groups (S) as compared to the other groups. The scores of steatosis and parenchymal inflammation observed in the amaranth oil (A) and squalene groups (S) were superior to the ones observed in the other groups. Our findings demonstrated that amaranth oil, and its component squalene, increased the excretion of bile acids but did not have a hypocholesterolemic effect in hamsters fed on a diet containing high amounts of saturated fat and cholesterol.  相似文献   

12.
The main goal of this work is to evaluate the extraction of sunflower oil from enzyme-treated collets using ethanol and isopropanol (IPA) as solvents. The sunflower collets are pretreated with the multienzyme complex Viscozyme L prior to solvent extraction by the Soxhlet method. The influence of the moisture content of the collets, pretreatment, processing time, and solvent type on the amount of total extracted material and the oil extraction efficiency is studied. Some quality parameters such as phospholipid content of the oil and chlorogenic acid content of the residual meal are also analyzed. At low moisture content (7%) the solvents exhibit similar oil extraction ability (98–99%), but with increasing moisture the extraction efficiency of ethanol decreases to about 85%, while no significant differences are observed for IPA. The enzymatic treatment increases the extraction efficiency for all times, especially for ethanol. It is observed that IPA is more efficient in the extraction compared to ethanol, and the amount of nonlipid material is reduced by ≈70%. In addition, the oil extracted with IPA have lower phospholipid content and the residual meal presents a higher chlorogenic acid content. Practical Applications:This work would contribute toward the use of green solvents in the extraction of sunflower oil from collets. Ethanol and isopropanol, used as solvents, present attractive advantages, including low toxicity, good operational security, as well as being obtained from a renewable source. The obtained data provide up-to-date information on the use of these alcohols in the extraction of sunflower oil from collets and the influence of operating conditions, such as moisture content, enzymatic pretreatment of the collets, and the extraction time. Information about oil and meal quality is also reported.  相似文献   

13.
Squalene and tocopherols are the most important bioactive constituents in lipophilic amaranth fraction. Therefore, developments of processes of isolation of amaranth extracts enriched with these compounds are of interest. In this study the lipophilic fraction of amaranth seeds was extracted by supercritical fluid extraction with carbon dioxide (SCE-CO2) under different pressure conditions and by adding 2 and 5% of cosolvent ethanol. The yield of extract varied from 1.37 (15 MPa without cosolvent) to 5.12% (55 MPa and 5% of cosolvent). The highest content of unsaponifiables (21.1%) in the extract was at 55 MPa and 5% of cosolvent; at these conditions the yields of tocopherols and squalene from amaranth seeds were 317.3 mg/kg and 0.289 g/100 g, respectively. Tocopherol isomers in amaranth oil were distributed at the approximate ratio of 1(α-T):27(β-T):6.5(γ-T):5(δ-T). The extract was fractionated in the two separators by gradual decrease of the pressure and it was found that the fraction obtained at ambient conditions contained the highest concentration of tocopherols (up to 7.6 mg/g) and squalene (up to 17.9 g/100 g oil). The highest antioxidant activity measured by the L-ORAC assay possessed the fractions with the highest concentrations of squalene and tocopherols and obtained at 15 MPa with pure CO2 (235.1 μmol TE/g) and 2% of cosolvent (257.6 μmol TE/g).  相似文献   

14.
Enzymatic extraction of mustard seed and rice bran   总被引:15,自引:0,他引:15  
Aqueous enzymatic extraction was investigated for recovery of oil from mustard seed and rice bran. The extraction process was reproducible based on statistical analysis of extraction data under different extraction conditions. The most significant factors for extraction were the time of digestion with enzymes, seed or bran concentration in water, volume of hexane added before recovery, and amount of enzyme(s) used. The pretreatment steps of each material before enzyme digestion influenced oil yield. Quality of enzyme-extracted mustard oil was better with respect to color and odor than commercial expeller-extracted and Soxhlet-extracted oils. Most of the characteristics of rice bran oil were identical to those of commercial solvent-extracted oils, but rice bran oil had a lower content of colored substances and higher acidity (free fatty acid). Enzymatic extraction led to recovery of a protein concentrate with increased protein and reduced fiber and ash contents in the mustard and rice bran meals.  相似文献   

15.
The objectives of this study were to characterize peptides found in unprocessed amaranth hydrolysates (UAH) and extruded amaranth hydrolysates (EAH) and to determine the effect of the hydrolysis time on the profile of peptides produced. Amaranth grain was extruded in a single screw extruder at 125 °C of extrusion temperature and 130 rpm of screw speed. Unprocessed and extruded amaranth flour were hydrolyzed with pepsin/pancreatin enzymes following a kinetic at 10, 25, 60, 90, 120 and 180 min for each enzyme. After 180 min of pepsin hydrolysis, aliquots were taken at each time during pancreatin hydrolysis to characterize the hydrolysates by MALDI-TOF/MS-MS. Molecular masses (MM) (527, 567, 802, 984, 1295, 1545, 2034 and 2064 Da) of peptides appeared consistently during hydrolysis, showing high intensity at 10 min (2064 Da), 120 min (802 Da) and 180 min (567 Da) in UAH. EAH showed high intensity at 10 min (2034 Da) and 120 min (984, 1295 and 1545 Da). Extrusion produced more peptides with MM lower than 1000 Da immediately after 10 min of hydrolysis. Hydrolysis time impacted on the peptide profile, as longer the time lower the MM in both amaranth hydrolysates. Sequences obtained were analyzed for their biological activity at BIOPEP, showing important inhibitory activities related to chronic diseases. These peptides could be used as a food ingredient/supplement in a healthy diet to prevent the risk to develop chronic diseases.  相似文献   

16.
Extraction and in situ esterification of rice bran oil with ethanol were investigated by studying the effects of rice bran oil FFA content and water content of ethanol. Ethyl ester formation in the ethanol phase increased as FFA content increased. Neutral oil solubility in this phase fell considerably, resulting in a high ethyl ester content. The decrease of the water content in ethanol led to an increase in neutral oil solubility in ethanol and promoted the equilibrium of reaction to ethyl-ester formation, resulting in lower FFA content of the product. The main factor that affected yield and monoester content when using high-acidity bran and various monohydroxy alcohols was the solubility of neutral oil in alcohol. The highest monoester content was obtained with methanol.  相似文献   

17.
Linseed oil, also known as flaxseed oil, is obtained from the dried, ripened seeds of the flax plant (Linum usitatissimum). The oil is obtained by pressing, sometimes followed by solvent extraction supported by a refining process. Linseed oil is an edible oil that is in demand as a nutritional supplement, as a source of α‐linolenic acid an n‐3 fatty acid. The aim of this work was to investigate: (1) the influence of the corn crisp extrusion process on the degradation of fatty acids in linseed oil (LO) and some preparations obtained from the linseed oil such as ethyl ester (EE) and free fatty acids (FFA) added to the corn in order to increase the nutritional value of the crisps, (2) influence of the oil and two fatty preparations obtained from it on the quality of corn crisps, (3) interaction of the lipid fraction with starch. The extrusion process did not degrade the fatty acids significantly. Expansion ratio obtained in the corn crisp extrusion process decreased from 620 % down to 153 %, the size of pores/thickness of the starch–protein walls forming the structure of the extruded product decreased from 10 μm down to 4 μm, the hardness of the crisps increased from 20 to 75 N, and number of lipid–starch complexes increased with rising polarity of the lipid fraction. FFA were complexed mostly by starch (about 90 %), to a lesser degree by EE (about 60 %) and to the least extent by triacylglycerols (about 10 %). The studies performed under industrial conditions using the single screw extruder for the production of corn crisps with the application of standard parameters of the extrusion process indicated that the addition of a mass of 5 % of the various lipids (triacylglycerols of linseed oil, ethyl esters and fatty acids obtained from linseed oil) to corn grits prior to the extrusion process significantly affect the quality of corn crisps.  相似文献   

18.
Summary Damage to sesame seed by mechanical threshing equipment resulted in loss of seed viability immediately. FFA content of oil in damaged seed increased gradually after harvest. High correlation coefficients were obtained between viability immediately following harvest and free fatty acid content of oil in sesame seed at various dates after harvest. The results of the analyses of the data indicate that viability of the seed at harvest may be of value in estimating the free fatty acid content of oil for various storage periods. Presented at annual meeting. American Oil Chemists’ Society, Houston, Tex., April 23–25, 1956.  相似文献   

19.
The purpose of the study was to establish the protein distribution based on solubility in physical fractions of amaranth flour, in particular between the flour from the germ and that from the perisperm. The protein distribution was obtained applying a series of solvents sequentially utilized in the classical methodology of Osborne & Mendel. The sample of A. cruentus weighing 2000 g was divided into 4 subsamples of 500 g each. One was left as the control while the other 3 were ground individually with a mill. Each flour was screened through 18, 20, 30 and 40 mesh screens, so that 5 fractions were obtained from each of the whole grain flours. Samples of each screened fractions were observed by stereoscopy and analyzed for moisture, fat and protein. This characterization suggested that the fraction above the 30 mesh screen and the flour which passed the 40 mesh screen probably were the perisperm and germ respectively. The 30 mesh sample contained 2.34 fat and 9.05% protein while the 40 mesh contained 16.18% fat and 26.46% protein. The extraction and partitioning of the proteins indicated that the most important fractions in germ and perisperm were the water soluble and glutelins measured by Kjeldahl. The relationship of the water soluble + globulin to glutelins ratio was 2.1 to 1 in the whole grain, 1.9 to 1 in the perisperm and 1.7 to 1 in the germ. The distribution of proteins was very much alike between germ and perisperm. The levels of prolamines were quite low. The protein extraction of the perisperm proteins retained on the 30 mesh screen was low (71.1%) measured by Kjeldahl and 47.4% with the Bradford method to measure protein.  相似文献   

20.
Deacidifying rice bran oil by solvent extraction and membrane technology   总被引:15,自引:7,他引:8  
Crude rice bran oil containing 16.5% free fatty acids (FFA) was deacidified by extracting with methanol. At the optimal ratio of 1.8:1 methanol/oil by weight, the concentration of FFA in the crude rice bran oil was reduced to 3.7%. A second extraction at 1:1 ratio reduced FFA in the oil to 0.33%. The FFA in the methanol extract was recovered by nanofiltration using commercial membranes. The DS-5 membrane from Osmonics/Desal and the BW-30 membrane from Dow/Film Tec gave average FFA rejection of 93–96% and an average flux of 41 L/m2·h (LMH) to concentrate the FFA from 4.69% to 20%. The permeate, containing 0.4–0.7% FFA, can be nanofiltered again to recover more FFA with flux of 67–75 LMH. Design estimates indicate a two-stage membrane system can recover 97.8% of the FFA and can result in a final retentate stream with 20% FFA or more and a permeate stream with negligible FFA (0.13%) that can be recycled for FFA extraction. The capital cost of the membrane plant would be about $48/kg oil processed/h and annual operating cost would be about $15/ton FFA recovered. The process has several advantages in that it does not require alkali for neutralization, no soapstock nor wastewater is produced, and effluent discharges are minimized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号