首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mercury (Hg) is a toxic trace element which is emitted mostly in gas phase during coal combustion, although some Hg compounds may be retained in the fly ashes depending on the characteristics of the ashes and process conditions. To improve the retention of Hg in the fly ashes a good knowledge of the capture mechanism and Hg species present in the fly ashes is essential. The temperature programmed decomposition technique was chosen to identify the Hg species present in fly ashes obtained from two Pulverized Coal Combustion (PCC) plants and a Fluidized Bed Combustion (FBC) plant. The fly ashes were then used as Hg sorbents in a simulated flue gas of coal combustion and gasification. The Hg compounds found in the fly ash from the FBC plant after elemental mercury retention were mainly HgCl2 and HgSO4. The Hg species present in the two fly ashes from the two PCC plants were HgCl2 and Hg0. The Hg species formed in the coal gasification atmosphere was HgS for all three fly ashes. The only Hg compound identified in the fly ashes after the retention of mercury chloride was HgCl2.  相似文献   

2.
Distributions of mercury speciation of Hg0, Hg2+ and Hg P in flue gas and fly ash were sampled by using the Ontario Hydro Method in a 220 MW pulverized coal-fired boiler power plant in China. The mercury speciation was varied greatly when flue gas going through the electrostatic precipitator (ESP). The mercury adsorbed on fly ashes was found strongly dependent on unburnt carbon content in fly ash and slightly on the particle sizes, which implies that the physical and chemical features of some elemental substances enriched to fly ash surface also have a non-ignored effect on the mercury adsorption. The concentration of chlorine in coal, oxyge nand NO x in flue gas has a positive correlation with the formation of the oxidized mercury, but the sulfur in coal has a positive influence on the formation of elemental mercury. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

3.
《Fuel》2006,85(14-15):2018-2026
Fly ash is a waste material from coal-burning power plants that consume pulverized solid fuels. Two fly ashes from Asturias (Spain) were activated mechanically by wet milling and chemically by leaching with sulfuric acid. The activated fly ashes were characterized in terms of physico-chemical characterization, granulometry, density, blaine, BET, XRD and SEM.A comparative study was carried out of several mortars, in some cases using different additions of silica fume or activated fly ash. The influence that these additives have on the mechanical resistance of the mortars was studied. As well as the possible use of these activated fly ashes as a replacement for silica fume in producing high-strength mortar or concrete. It was found that mortars containing activated fly ash presented higher compressive strengths.A mercury intrusion porosimetry study was carried out on cement mortars made with mineral additives such as silica fume and activated fly ashes. In general, the porosities values of these mortars showed that mineral admixtures improved mechanical resistance due to the decrease in pore size.  相似文献   

4.
李晓航  刘红刚  路建洲  滕阳  张锴 《化工学报》2019,70(11):4397-4409
在固定床吸附反应器内对两台300MW等级燃煤发电机组循环流化床锅炉和煤粉锅炉飞灰样品进行气相零价汞吸附实验,通过改变实验工况研究温度、入口汞浓度和入口气体流量对飞灰汞吸附能力的影响。采用颗粒内扩散模型、准一阶和准二阶动力学模型、耶洛维奇(Elovich)模型对实验数据分别进行拟合,从动力学的角度探讨两种锅炉飞灰对气相零价汞吸附的影响机制以及两种锅炉飞灰与气相零价汞之间吸附动力学行为差异。结果表明:相同工况下循环流化床锅炉飞灰汞吸附过程的穿透时间和平衡吸附量远大于煤粉锅炉飞灰。吸附温度为150℃时,两种锅炉飞灰对气相零价汞的平衡吸附量最大。由于外扩散阻力随气体入口流量的增加而减小,入口汞浓度的增加可提高传质推动力,飞灰对汞的吸附得以增强。动力学分析表明飞灰的零价汞吸附由外扩散、内扩散和表面化学吸附共同控制,其中表面化学吸附是该吸附过程中的控制步骤;准二阶动力学模型和Elovich动力学模型更适合于描述该吸附过程。相同实验条件下,循环流化床锅炉飞灰吸附过程拟合所得的颗粒内扩散系数、准一阶动力学常数和初始吸附速率均大于煤粉锅炉飞灰。  相似文献   

5.
张世华 《硅酸盐通报》2018,37(1):210-214
采用石灰石粉对低品位粉煤灰进行煅烧改性,利用X射线衍射、扫描电镜和能谱分析等方法对改性粉煤灰的矿物组成和化学组成进行表征.同时测定了掺改性粉煤灰的水泥浆体的抗压强度和自收缩,并采用背散射扫描电镜和压汞测孔仪研究了掺改性粉煤灰水泥浆体的微观结构.结果表明,粉煤灰经煅烧改性生成了水硬性矿物β-C2S,水化可生成CSH凝胶,改善了等外粉煤灰颗粒与水泥基体的界面粘接,降低了复合水泥浆体的孔隙率和自收缩,提高了复合水泥浆体的强度.  相似文献   

6.
Currently only 20% of the fly ash produced in Korea is utilised for industry, and the remainder is disposed as waste in landfill sites. Both anthracite and sub-bituminous coals are burnt in Korea. Fly ash and coal samples were collected from five different coal-fired power stations in Korea and analysed for their chemistry and mineralogy. Batch leaching tests were also carried out to investigate the leaching behaviour of selected fly ashes. The fly ash leachate chemistry was compared with the groundwater taken directly from the monitoring well installed in one of the power stations. The anthracite coals contain illite, pyrophyllite and kaolinite whereas kaolinite is the representative clay mineral for the sub-bituminous coals. Anthracite coals were higher in Si, Al and K than the sub-bituminous coals, reflecting higher mineral matter contents in the anthracite coals. Mullite and quartz are the main mineral phases for two different types of the fly ashes, with some iron oxides. The chemical compositions of the anthracite and sub-bituminous fly ashes are comparable with each other, except for extraordinary high concentrations of Cr for one anthracite fly ash. Most of the trace elements in the ash were enriched in the finer fraction, indicating surface associations. Although, some elements including Na, K, Ca and Cu were released rapidly in the initial stage of leaching, measurable amounts of metals were still detectable in the fly ash leachate treated several times with distilled water. Such leaching behaviour indicates slow and long-term leaching of elements associated with the glass fractions of the ash particle. This was confirmed by leaching of weathered fly ash, which had been disposed of for several years. Comparison of the ash leachate, treated with 0.1N-HCl, fly ash slurry in the ash pond and the groundwater indicate the influence of the ash leachate from the ash disposal mound on the groundwater composition.  相似文献   

7.
M. Antonia López-Antón 《Fuel》2007,86(14):2064-2070
Mercury and selenium are present as trace elements in coal and may be emitted to the environment in gas phase during coal conversion processes or be partially retained on the fly ashes. The present work explores the possibility that selenium may contribute to mercury capture in fly ashes in two different situations: firstly the power station itself, in order to evaluate the influence of typical working conditions, and secondly in a fixed bed of fly ashes enriched with Se, in order to study the capture of mercury in more severe conditions. It was found that the presence of selenium in fly ashes may improve their capacity to capture mercury. However, in the four fly ashes of different origin studied, selenium is not the most important component for mercury retention. In fact, the presence of selenium in fly ash samples enriched in unburned carbon does not have any significant effect on mercury retention.  相似文献   

8.
The influence of carbon particle type in fly ashes on mercury adsorption   总被引:2,自引:0,他引:2  
Recent research has shown that certain fly ash materials produced in coal combustion for power generation have an affinity for the mercury compounds present in flue gases. However, the exact nature of Hg-fly ash interactions is still unknown and the different variables that influence mercury adsorption need to be identified. In this work the microscopic components of fly ashes derived from the combustion of different types of feed blends of different coal rank and mercury adsorption were investigated. The aim of this research was to establish relationships between Hg retention and the type of unburned carbons present in various fly ashes. The fly ashes and fly ash fractions studied were used as sorbent beds for high mercury concentrations, conditions in which mercury retention is highly favored. From the results obtained it was confirmed that the role of the unburned carbon components in mercury capture may depend, among other factors, on the type of unburned carbon. Fly ashes capture different species of mercury depending on their nature and the type of anisotropic particles.  相似文献   

9.
《Fuel》2006,85(10-11):1418-1427
Fly ashes were collected from the electrostatic precipitator (ESPs) and/or the baghouse of seven coal-fired power plants. The fly ashes were sampled from power plants that use pulverized subbituminous and bituminous feed coals. Fly ash from bituminous coals and limestone feed coals from fluidized-bed power plant were also sampled. The fly ashes were examined for their mineralogies and elemental compositions. The fly ashes from pulverized low sulfur coals are ferrocalsialic, those from high sulfur coals are ferrosialic and the fly ashes from the fluidized bed coals are ferrocalcic. The concentrations of As, Cd, Hg, Mo, Ni, and Pb in fly ash are related to the S content of the coal. Generally, those feed coals with a high S content contain higher concentrations of these elements. The concentrations of these elements are also greater for baghouse fly ash compared to ESP fly ash for the same station. The S content of fly ash from high S coal is 0.1% for pulverized ESP fly ash and 7% for baghouse fly ash from the fluidized bed, indicating that most of the S is captured by fly ash in the fluidized bed. The baghouse fly ash from the fluidized bed has the highest content of Cd, Hg, Mo, Pb, and Se, indicating that CaO, for the most part, captures them. Arsenic is captured by calcium-bearing minerals and hematite, and forms a stable complex of calcium or a transition metal of iron hydroxy arsenate hydrate [(M2+)2Fe3(AsO4)3(OH)4·10H2O] in the fly ash. Most elements in fly ash have enrichment indices of greater than 0.7 indicating that they are more enriched in the fly ash than in the feed coal, except for Hg in all ESP ashes. Mercury is an exception; it is more enriched in baghouse fly ash compared to ESP. Fly ash collected from a station equipped with hot side ESP has a lower concentration of Hg compared to stations equipped with cold side ESP using feed coals of similar rank and mercury content. Fly ash particles from fluidized bed coal are angular and subangular with cores of quartz and calcite. The quartz core is encased in layer(s) of calcium-rich aluminosilicates, and/or calcium/iron oxides. The calcite core is usually encased in an anhydrite shell.  相似文献   

10.
Colin R. Ward  David French 《Fuel》2006,85(16):2268-2277
The proportion of amorphous or glassy material in a series of fly ashes has been evaluated by X-ray powder diffraction (XRD) using the Rietveld-based SIROQUANT software package. Several different sample preparation and processing methods were investigated, including XRD analysis of samples spiked with known masses of synthetic corundum and zinc oxide as well as techniques based on analysing the raw or unspiked fly ash directly using the SIROQUANT process. In the latter case, two different poorly crystallised silicate mineral patterns, metakaolin and tridymite, were used in the SIROQUANT processing of the raw ash XRD data to represent the amorphous constituents. The results of the different methods based on XRD of spiked samples were found to be mutually consistent, and also consistent with other published data for an international reference fly ash sample. SIROQUANT analysis of the unspiked fly ashes gave similar results, although different poorly crystallised silicate reference patterns seem to be more suited for ashes from Australian and North American sources.The mineralogy of the ashes, including the proportions of quartz, iron oxide and glassy constituents, appears to be related to the nature of the mineral matter in the relevant feed coals. Calculations based on subtracting the inferred chemistry of the crystalline minerals in the fly ashes from the total fly ash chemistry were also used to estimate the overall chemical composition of the glass fraction in each ash. The results indicate that ashes derived from lower-rank coals in the samples studied have different glass compositions to those derived from higher-rank (bituminous) materials. These different glass compositions appear to be related to several other ash properties, including particle density and particle surface area. Evaluation of glass content and composition may be significant in different aspects of ash utilisation, and also in evaluating interactions with water at ash disposal sites.  相似文献   

11.
Short-term water solubility characteristics of bottom ashes and fly ashes from two important Turkish lignites were investigated in association with the concentrations of some heavy metals. For this, the alkaline ashes were interacted with acidic rain water and dilute acidic solutions for leaching times changing from 10 min to 2 days to assess the mobilization potential during ash–water interactions. The concentrations of leachable trace elements such as chromium, lead, cadmium, zinc, and nickel were determined in leachate using Atomic Absorption (AA) Spectrometry. Iron concentrations were also investigated since it plays a critical role on trace element enrichment mechanism. The mineralogical and structural identification of the parent ash samples were carried out by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. The extent of the mobility of the ashes was identified regarding the physical and chemical properties of the ashes. Concentrations of the trace elements in leachates were compared to the several guideline values regulating the maximum contaminant levels in drinking water and irrigation water as well as the regulatory threshold concentrations in leachate.  相似文献   

12.
Effects of the type and amount of fly ash substitution on the heat of hydration of portland cement-fly ash pastes were investigated. Three Turkish fly ashes were used. One of them was a high-calcium and the other two were low-calcium fly ashes. The specimens contained 0, 10, 20, and 40% fly ash by weight of portland cement. The tests were carried out as described in ASTM C 186 however one separate set of specimens were first subjected to an early external temperature of 67±2°C for six hours followed by the standard temperature until time of test. The results revealed that the low-calcium fly ashes, regardless of their type, reduce the heat evolution when used for partial cement replacement. The high-calcium fly ash, on the other hand, does not produce significant changes in the heat of hydration.  相似文献   

13.
研究了粉煤灰对天然水体生化需氧量(BOD)、化学需氧量(COD)的影响,考察了不同地区的粉煤灰、不同粒级粉煤灰、不同的水样对水的生化作用。结果表明:不同地区的粉煤灰对水体的生化作用不同;不同粒级的粉煤灰对水体的生化作用不同,粒级数越大生化作用越明显,其中100~200目的粉煤灰对水体的生化作用最明显;相同粉煤灰对蒸馏水、自来水、河水的生化作用各不同,其中对河水的生化作用最明显。结合水质污染程度的指标判断粉煤灰对水体的生化指标有一定的影响。  相似文献   

14.
粉煤灰和化工废石膏复合用作筑路材料研究   总被引:1,自引:0,他引:1  
本文研究了激发剂对化工废石膏 -粉煤灰新型道路建筑材料的强度和自由线膨胀率等性能的影响 ,以及减水剂的作用和这种新型道路建筑材料的硫酸盐侵蚀性能等。本研究选用三种不同类别粉煤灰与化工废石膏进行复合试验。研究结果表明 ,当原状粉煤灰与高钙粉煤灰混合后再与化工废石膏复合研制的材料 ,比两种灰单独掺加时效果好。本研究制得的新型道路建筑材料具有较高的力学性能和优异的抗硫酸盐侵蚀性能  相似文献   

15.
马宵颖 《粉煤灰》2011,(4):9-11,14
以粉煤灰为主要原料,加入工业石灰,采用消化方法制备了改性吸收剂,并分别加入M,N,P,S添加剂使之成为“富氧型”改性吸收剂.利用固定床实验装置研究了改性后吸收剂的脱汞性能,实验表明改性后的M和N型吸收剂具有较好脱汞性能,其中M更为理想,当温度达到100℃,脱汞效率可以达到56%.与未加入添加剂的吸收剂相比,M型吸收剂在...  相似文献   

16.
The effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample has been investigated. The samples were tested for mercury adsorption using a fixed‐bed with a simulated flue gas. The activated fly ash carbon sample has lower mercury capacity than its precursor fly ash carbon (0.23 vs. 1.85 mg/g), although its surface area is around 15 times larger, 863 vs. 53 m2/g. It was found that oxygen functionality and the presence of halogen species on the surface of fly ash carbons may promote mercury adsorption, while the surface area does not seem to have a significant effect on their mercury capacity.  相似文献   

17.
Fly ash from straw combustion contains valuable nutrients when returned to agricultural soils. In many instances, however, this fly ash may contain heavy metals, such as cadmium, at levels which often exceed the limits given by the Danish legislation. Thus before utilizing the nutrients, cadmium must be removed from these ashes. The use of an electrodialytic remediation method to remove cadmium from fly ash arising from straw combustion and containing 11.2 mg Cd kg?1 DM (dry matter) was accessed. After 36 days of remediation at a constant current density of 5.6 mA cm?2 more than 97% of the cadmium had been removed from around 150 g ash on a dry basis. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
A laboratory investigation was carried out to evaluate the strength properties of high-volume fly ash (HVFA) roller compacted and superplasticised workable concrete cured at moist and dry curing conditions. Concrete mixtures made with 0%, 50% and 70% replacement of normal Portland cement (NPC) with two different low-lime Class F fly ashes, good and low quality, were prepared. Water-cementitious material ratios ranged from 0.28 to 0.43. The compressive, flexural tensile and cylinder splitting tensile strengths were measured and presented. The relationship between the flexural tensile and compressive strengths was discussed. The influence of loss on ignition (LOI) content of fly ash on water demand and the strength of concrete was also discussed. The influence of moist and dry curing conditions on the high-volume fly ash (HVFA) concrete system was assessed through a proposed simple efficiency factor. The study showed that producing high-strength concrete was possible with high-volume fly ash content. LOI content increased the water demand of fresh concrete. HVFA concrete was found to be more vulnerable to dry curing conditions than was NPC concrete. It was concluded that HVFA concrete was an adequate material for both structural and pavement applications.  相似文献   

19.
An environmental chamber was constructed to measure the mercury flux from coal utilization by-product (CUB) samples. Samples of fly ash, FGD gypsum, and wallboard made from FGD gypsum were tested under both dark and illuminated conditions with or without the addition of water to the sample. Mercury releases varied widely, with 7-day experiment averages ranging from −6.8 to 73 ng/m2 h for the fly ash samples and −5.2 to 335 ng/m2 h for the FGD/wallboard samples. Initial mercury content, fly ash type, and light exposure had no observable consistent effects on the mercury flux. For the fly ash samples, the effect of a mercury control technology was to decrease the emission. For three of the four pairs of FGD gypsum and wallboard samples, the wallboard sample released less (or absorbed more) mercury than the gypsum.  相似文献   

20.
A series of four fly ashes, representing a variety of geological origins, and a bottom ash sample derived from the combustion of lignite-natural gas mixtures have been studied by 57Fe Mössbauer spectroscopy. The ashes are separated into magnetic and non-magnetic fractions to facilitate a study of the chemical state of the iron contained in the ash. The bottom ash contains no magnetic fraction whereas the magnetic fractions of the fly ashes range from 1.1 to 7.3%. The magnetic fractions contained iron in the form of magnetite, Fe3O4. Iron in the non-magnetic fly ash fractions occur as Fe+1 and Fe+2 mullites, and Fe+3 and Fe+2 silicates. Only Fe+3 silicates are found in the bottom ash.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号