首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Parameters for expressing the heating performance and baking results of sponge cakes dependent on heating performance in a forced convection oven were studied. The heating performance of a forced convection oven may be expressed by the apparent heat transfer coefficient which was measured at various air temperatures and velocities. Both the air velocity and temperature of the circulating air affected the apparent heat transfer coefficient in a forced convection oven and determined the final properties of the baked food. The effects of these parameters on sponge cakes baked in the forced convection oven were observed.  相似文献   

2.
Undesirable qualities of breads baked in nonconventional ovens have been observed by most researchers. The altered heat and mass transfer patterns and much shorter baking times associated with microwave radiation resulted in a crustless product with tougher, coarser, but less firm texture. Insufficient starch gelatinization, microwave-induced gluten changes, and rapidly generated gas and steam caused by the heating mode could be reasons for quality changes in the microwave-baked breads. Although breads baked in an electrical resistance oven did not brown, their interior characteristics and shelf-life were superior to those of products baked in a conventional oven. Bread with a superior keeping quality was obtained using an air impingement convection oven. The determination and explanation of the physical and biochemical changes that occur in products during baking in conventional versus nonconventional ovens are fruitful areas for future research.  相似文献   

3.
Cake Baking in Conventional, Impingement and Hybrid Ovens   总被引:1,自引:0,他引:1  
White layer cakes were baked in three types of air impingement ovens, a hybrid (microwave/air impingement) oven, and a reel oven. Cakes were evaluated based on volume, crust color, and texture. Oven heat transfer rates were measured directly, and ranged from 22.8 to 84.8 J/s m2C° for top and from 17.4 to 110.9 for bottom surfaces, exposed in the different ovens, with the conventional reel oven having the lowest values. An RSM design was used to establish optimum baking conditions for each oven. For air impingement ovens, baking time was reduced by almost half but produced cakes very similar to those from the control (reel) oven. Incorporating microwaves enabled a further reduction in baking time, to one fourth. Cakes baked with microwaves had similar color, but had 15% less volumes and firmer textures than control cakes.  相似文献   

4.
The effects of modes of heat transfer (radiation or convection) on the baking color development of food were studied. An experimental baking oven that could be altered to two heat transfer modes was designed; the ratio of heat by radiative transfer to total heat transferred was about 30% or 70%. The glucose-glutamate solutions were heated at different air temperatures to measure the browning rates to calculate the activation energies. Cookies were baked at 200°C to measure the lightness of color on the surface and the surface temperature. It was clarified that the development of color depended on the temperature only.  相似文献   

5.
Using an h-monitor, surface heat flux and effective surface heat transfer coefficients were evaluated during baking of two cakes in a tunnel-type multi-zone industrial oven. An average 75–80% of total heat flux was counted as radiation heat. Air-mass temperature outside the boundary layer was determined from the experimental temperature profiles over the h-monitor top plate. In the range of baking temperatures (186–22 5°C), relative air velocities (0.02-0.437 m/s) and absolute humidities (0.0267–0.0428 kg H2O/kg dry air) heat transfer coefficients were 20 to 48.0 W/m2K. A simple regression model was developed based on experimental data.  相似文献   

6.
The individual modes of heat transfer, e.g., conduction, radiation and convection, are considered for the processing of products in conventional band ovens. A specific theoretical model is considered for the baking of biscuits in an indirect fired oven. Values of individual heat transfer constants in the theoretical model and major effects of the individual modes of heat transfer were determined using lab scale heating devices. Extrapolating these results to a band oven baking process, the model indicated a heat transfer profile of about 20% heat transferred by conduction, about 45% by radiation and about 35% by forced convection in the band oven, with about half the heat being absorbed as sensible heat, and about half as latent heat.  相似文献   

7.
The effect of final baking in convection oven (FBC), microwave oven (FBM), and microwave oven with susceptor packaging material (FBMS) on partially baked (PB) frozen gluten‐free bread characteristics was investigated. Specific volume and crust color of loaves were measured at day 0. Bread moisture, water activity, and crumb and crust texture (at 15, 45, and 90 min after baking) were analyzed at day 0 and after 28 d of frozen storage (?18 °C). Volatile compounds from breads baked in convection oven or microwave oven with susceptor packaging material were also evaluated. Bread finally baked in convection oven or in microwave oven with susceptor packaging increased crust browning. Crumb and roll hardness increased with time after final baking (measured at 15, 45, 90 min) and after 28 d of frozen storage. Bread finally baked in microwave oven was the hardest, due to high water losses. At day 0, bread finally baked in convection oven had softer crumb than bread finally baked in microwave oven with susceptor packaging but, after 28 d of frozen storage, there were no differences between them. Moreover, FBC and FBMS rendered gluten‐free breads that could not be distinguished in a triangular test and had the same volatile compounds profile. In conclusion, FBMS could be an alternative to FBC.  相似文献   

8.
Thermal conductivity values of white bread were determined during heat processing to provide information for analytical modeling required during convective heat and mass transfer of the baking process. Selected physical properties of bread were determined: moisture, volume, bulk density and porosity. White bread was baked in a forced-air convection oven for 8, 16, 24 and 32 min. Thermal conductivity values ranged from 0.00072–0.00064 watts/cm-°C. Although a downward trend was observed and explained, no significant differences were revealed among thermal conductivity values. Thermal conductivity values were indirectly linearly dependent (p>0.05) on volume and porosity; directly, to bulk density and moisture loss.  相似文献   

9.
Moisture distribution in baked products at the end of baking is important because it directly affects the product's quality. In fact, nonhomogeneous moisture distribution may result in quality defects such as cracking, checking etc. Diffusion inside and convective mass transfer outside the product are important factors affecting the quality. Therefore, accurate values of mass transfer parameters should be known for optimization of the baking process to obtain a product of higher quality. For this objective, infinite mass transfer and constant diffusion coefficient simplifying approximations have been applied in the literature numerous times to develop mass transfer models. However, the infinite mass transfer coefficient approximation may not hold true, especially under natural convection conditions. To evaluate the mass transfer coefficient, baking experiments were carried out to obtain the moisture content changes of cookies during baking at 190, 200 and 210C under natural and forced convection conditions. Then, mass transfer coefficient was determined using the moisture content difference and the humidity ratio difference as the driving force for mass transfer. The results of these two approaches were compared, and the use of humidity ratio difference seemed to be a better approach in terms of reflecting actual process conditions because it is based on the surface changes.  相似文献   

10.
Baking is a decisive stage in the production of bakery products, in general—muffins, in particular—for most of the quality attributes of the final products depend on it. The aim of this work is to model the kinetics of muffin crust color development during baking and to evaluate the feasibility of this kinetic model to predict the baking times. Surface color is represented by the Browning Index, and the effect of baking temperature (from 140 to 220 °C) and process convective characteristics (natural convection, forced convection, and steam-assisted forced convection) are analyzed. Minimal baking times are calculated from experimental core temperature measurements. The modeling of browning kinetics, which incorporates the optimal crust color determined by sensory analysis, allows the estimation of optimal baking times. For all the tested conditions t op?>?t min, assuring a product whose inner structure was already totally baked. Finally, minimal, half, and optimal baking times present an exponential dependence with the oven temperature. Besides, there are no significant differences between both forced convection modes.  相似文献   

11.
Sponge cake is a sweet bakery product that begins as a fluid batter and, during baking, transforms into a porous solid, presenting an important volume expansion. The aim of this work was, first of all, to study experimentally the influence of operative conditions (natural and forced convection; oven temperature, from 140 to 180 °C; steam addition) on volume expansion and the heat transfer dynamics during baking of sponge cake. It was observed that an increase in oven temperature, airflow and steam injection produces an increase in volume expansion. Secondly, a mathematical model was developed to simulate heat transfer coupled with volume expansion. Both experimental and simulated temperature profiles verified that the last region to achieve a correct degree of baking is the one near the crust around the axial axis. In consequence, the minimal baking time was defined as the average time at which this region reaches 95–98 °C. The baking time was strongly affected by the effective oven temperature, with a slight influence of the convection mode.  相似文献   

12.
《Journal of food engineering》2009,95(3-4):344-349
The combined surface heat transfer coefficient is a determining parameter of convective baking process time and efficiency, as well as the resulting food product quality. By this study, the combined surface heat transfer coefficient term was determined at the convective oven temperature range of 70–220 °C, with fan (turbo) and without fan (static oven) applications. The methods of “Lumped Capacity” and “Time–Temperature Matching” were used. Both methods utilize the time–temperature data at a fixed position of a definite material, during unsteady state heating up period inside the convective oven. The increase in oven temperature and the fan application in the oven derived higher calculated values of surface heat transfer coefficients. Good agreement was observed between both methods and the literature values. The given methods are applicable to other oven types and heating modes.  相似文献   

13.
BACKGROUND: Anthocyanins, pink to purple water‐soluble flavonoids, are naturally occurring pigments with claimed health benefits. However, they are sensitive to degradation by high pH, light and temperature. Blue corn (maize) contains high levels of anthocyanins. Cookies are popular snacks and might serve as a vehicle to deliver antioxidants. A cookie formula with a high level of blue corn was developed with added acidulents and baked in ovens with different heat transfer coefficients. RESULTS: The best whole‐grain blue corn flour/wheat pastry flour ratio (80:20 w/w), guar gum level (10 g kg?1, flour weight basis) and water level (215 g kg?1, flour weight basis) were determined based on response surface methodology analysis. The interactions of citric and lactic acids and glucono‐δ‐lactone with three oven types having different heat transfer coefficients (impingement oven 179 °C/4 min, reel oven 204 °C/10 min and convection oven 182 °C/4 min) influenced the total anthocyanin content (TAC) remaining in blue corn‐containing cookies after baking. CONCLUSION: Cookies baked with citric acid in the convection oven retained the maximum TAC (227 ± 3 mg kg?1). By baking rapidly at lower temperatures and adding acidulents, it may be possible to increase residual natural source antioxidants in baked foods. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Bread, cakes, and cookies were baked in direct‐ and indirect‐gas fired, foodservice style convection ovens. Oven humidity was varied by including different numbers of perlite and water dummy loads during baking. Oven, product, and dummy temperatures were continuously recorded during baking, as was oven humidity. The properties of the finished baked foods were measured. Increased oven humidity resulted in products with higher yield, greater volume or spread, lighter color, and reduced firmness.  相似文献   

15.
Salmon steaks were broiled using infrared radiation and compared to convection oven baking. Total percent cooking losses of moisture and fat content were not significantly different. Samples broiled by infrared oven retained 87.2% and 92.6% of thiamin and riboflavin content, respectively. There were no significant differences for vitamin retention by both methods. Appearance and color of salmon steaks baked in the convection oven were rated significantly higher than infrared broiled samples. Tenderness and juiciness scores for infrared broiled steaks were significantly higher than those for convection oven baked steaks. There were no significant differences in panel scores for odor, flakiness, flavor and overall acceptability of steaks prepared by both methods.  相似文献   

16.
The aim of the study was to evaluate the physical and microstructural characteristics of crackers baked in four different industrial baking ovens (indirect radiation-cyclotherm, indirect convection, hybrid and industrial tunnel-ITO). Indirect convection and cyclotherm ovens provide the highest (5685.43 ± 51 W m−2) and the lowest (4860 ± 38.87 W m−2) amount of heat flux, respectively. Despite the amount of heat flux, indirect convection led to crackers with the highest moisture (7.86% vs. 4.82% in clyclotherm) and specific volume, but the lowest hardness. Cyclotherm resulted in crackers with lower specific volume, surface area, porosity, smooth and regular surface. Conversely, the hybrid and ITO ovens showed closer heat flux, leading to crackers with similar moisture content, texture parameters, specific volume, browning and inner porosity. Overall results show the potential of baking using different ovens for modifying the quality parameters of the crackers.  相似文献   

17.
The quality of devil's food cake baked in a microwave/convection oven using different oven conditions and pan characteristics was assessed by sensory and objective methods. The most important factors were the number of layers baked at a given time and the baking pan characteristics, followed by initial oven temperatures. Crust color, moistness and cake symmetry were affected by these conditions. For example, single layers received a lower sensory score and had sticky and less red crusts than double layers. Cakes baked in glass-polyester microware pans were peaked, whereas those baked in aluminum pans were flat. Although slight differences in quality were found by both sensory and objective evaluations, all cakes were acceptable.  相似文献   

18.
This study discusses the effect of airflow on oven temperature profiles, the internal cake temperature and the final cake quality. It was found that the presence of airflow reduced the oscillation in the oven temperature profile from 12.98–30.27% to 3.17–4.02%. The bottom of the oven chamber experienced the greatest reduction in temperature oscillation in the presence of airflow. During the second stage of baking with airflow, the heating rate was increased from 5.07 to 7.52 °C min?1 and 8.35 °C min?1 to the increase of the baking temperature from 160 to 170 °C and 180 °C, respectively. The cake volume expansion rate was also increased 5–10% during second stage when baking with airflow condition. The cakes baked in the presence of airflow had a more porous crumb texture and lower moisture content compared to the cakes baked without airflow.  相似文献   

19.
The convective oven ring cake baking process was investigated experimentally and numerically as a simultaneous heat and mass transfer process. The mathematical model described previously by the authors for cup cake baking was modified to simulate ring cake baking. The heat and mass transfer mechanisms were defined by Fourier’s and Fick’s second laws, respectively. The implicit alternating direction finite difference technique was used for the numerical solution of the representative model. Prior to the utilization of the developed model in predicting the temperature and moisture profiles for ring cake baking, the results of the numerical model were compared with analytical results involving only heat or mass transfer with constant thermo-physical properties. Excellent agreement was observed. The numerical temperature and moisture contents predicted by the model were compared with the experimental profiles. They agreed generally reasonably well with the experimental temperature and moisture profiles.  相似文献   

20.
The increasing trade of ready‐to‐eat foods such as cookies highlights an interest in quality defects during baking. Heat (h and thermal diffusivity) and mass (mass transfer and diffusion coefficients) transfer parameters are significant parameters affecting the quality changes. Therefore, it is important to determine these parameters for modeling and process optimization studies. Among these, the h is important, revealing the relationship between the heating medium and product surface. As baking involves a simultaneous heat and mass transfer involving moisture diffusion and heat conduction inside and convective heat and mass transfer outside, a lumped system method may not be an accurate choice to determine the h value. Changes in the product volume and contact heating from bottom of the product also bring extra challenges to the determination of h. Therefore, the objective of this study was to use realistic approaches including simultaneous heat and mass transfer to determine the changes in h. The heffvalues for the bottom and top surface of the cookies were then determined, applying a numerical procedure where the surface temperature changes were the boundary conditions with evaporation on the surface. The hband ht values increased with baking temperature and varied with baking time. The results of this study showed that evaporative mass flux for the top surface, heat flux for the bottom surface and the product's volume changes were significant in the variation of h values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号