首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为解决高孔隙率多孔金属材料制备过程中的污染问题,以升华性萘颗粒为造孔剂,采用放电等离子脉冲烧结法(SPS)进行多孔铝块体材料的制备。结果表明,升华性造孔剂可在实现多孔铝材料高孔隙率的同时,有效提高其洁净度。采用该方法在350℃时可以制备出结构与尺寸可控性好、开孔效果好、孔隙率(63.33%)较高、粉体颗粒无明显长大的多孔金属铝块体材料。升华性造孔剂可对孔隙体积进行有效调节,实现多孔铝材料体内小孔与大孔的合理搭配,进一步改善多孔铝材料孔隙之间的连通性,该方法与SPS烧结技术相结合后,对于开孔性与颗粒连接性要求较高的多孔金属材料制备具有技术优势。  相似文献   

2.
用粉末烧结法制备了孔结构为球形中空孔和线型中空孔的镍基多孔高温合金材料.对试样进行显微组织观察和力学性能测试.结果表明:制备的多孔高温合金材料的孔隙分布均匀,孔径大小一致.通过高温烧结,多孔合金骨架处的金属颗粒之间形成了烧结颈,发生了烧结结合.生成孔的孔隙度随造孔剂(尿素)的添加量增加而增加,当造孔剂的质量分数为40%时,可得到孔隙度为81.62%的球形多孔材料.多孔材料具有优良的能量吸收性能,其压缩性能随孔隙度和孔径的增加而下降.  相似文献   

3.
以Fe、Al元素粉末为原料,通过添加造孔剂(NH4)2CO3,利用偏扩散/反应合成,制备具有可控孔结构特征、高孔隙率的FeAl多孔材料;采用XRD、SEM、OM及孔结构与力学性能检测等测试手段研究造孔剂(NH4)2CO3添加量对FeAl多孔材料的孔结构与力学性能的影响。结果表明,随造孔剂添加量增加,FeAl多孔材料的孔隙率升高,当造孔剂质量分数为15%时,孔隙率高达60%;力学性能随孔隙率增加而下降,抗弯强度与孔隙率呈指数递减关系;并得出了孔隙率与抗拉强度关系的定量方程σb=165(1-p)2.4。  相似文献   

4.
以钛粉和银粉为原料,不同含量的碳酸氢铵为占位剂,采用粉末冶金的方法制备多孔Ti-5Ag合金。结果表明制备的多孔Ti-5Ag合金的相组成为α-Ti。随着碳酸氢铵添加量的增加,多孔Ti-5Ag合金的密度逐渐降低,孔隙率逐渐增加。形貌观察表明随着孔隙率的增加,多孔Ti-5Ag合金中大孔的数量增多,并且孔与孔之间的连通性增加;力学测试显示其弹性模量和抗压强度均降低。多孔Ti-5Ag合金的力学性能可以通过控制碳酸氢铵的添加量调整到与人体骨匹配,有潜力作为多孔抗菌植入体用于骨科。  相似文献   

5.
为了制备镍多孔过滤材料,本文以镍粉为原料,以K2CO3为造孔剂,采用烧结溶解法制备了不同孔隙率镍多孔试样。本文讨论了造孔剂体积分数、压坯压力、烧结温度对样品孔隙率、孔径和透气度的影响,以及孔隙率与抗压强度的关系。研究表明:当造孔剂添加量在10%~40%时,样品孔隙率θ为27. 8%~52. 4%。当压坯压力在100~400 MPa时,随压力增大样品孔隙率、孔径和透气度均降低;烧结温度在1000~1250℃时,随烧结温度升高,孔径和透气度先增大后缓慢降低,在1150℃出现峰值。当造孔剂体积分数为30%,压制压力200 MPa时,烧结温度为1150℃时,所制备多孔镍孔隙率为40. 56%,最大孔径为26. 7μm,透气度255. 01 m3·(h·kPa·m2)-1,抗压强度为24. 12 MPa。  相似文献   

6.
《稀土》2017,(4)
采用添加造孔剂法制备多孔钛,并且加入微量氟化镧以期得到高孔隙率高强度的多孔钛。选取三种不同粒径的钛粉做为原料,分别制备多孔钛,并且加入氟化镧探究其对多孔钛的影响效果。随着钛粉粒径的减小,多孔钛的开孔率、孔隙率随着下降,孔径尺寸略有减小;且多孔钛的抗压强度、弹性模量和抗弯强度随之增强,但不同粒径的多孔钛,氟化镧的增加效果不同,而细化晶粒是氟化镧能增强多孔钛力学性能的原因。综合考虑,C组(粒径最小)制备所得的多孔钛力学性能最佳,其中氟化镧的添加量为0.3%(质量分数)时抗压强度、弹性模量分别为157.84 MPa和3.73 GPa,抗弯强度为66.62 MPa。  相似文献   

7.
以Al和Mg元素混合粉末为原料,用粉末冶金模压成形和无压反应烧结方法制备出Al-Mg金属间化合物多孔材料,研究反应过程中Al-Mg金属间化合物多孔材料的相转变、体积膨胀、孔结构参数和显微形貌的变化,并对其孔隙形成机理进行讨论。研究结果表明:烧结后Al-Mg金属间化合物形成了均一的Al3Mg2相并发生了显著的体积膨胀,开孔隙率随温度的升高而增大,经435℃烧结后,达到24.7%;造孔机理是压制过程中粉末颗粒间隙孔的产生和固相扩散过程中的Kirkendall效应造孔。  相似文献   

8.
以羰基镍粉为原料,选用聚甲基丙烯酸甲酯(PMMA)作为造孔剂,采用粉末冶金方法制备孔结构和孔隙可控的多孔镍毛细芯。采用X射线衍射仪、扫描电镜和力学性能测试等检测手段对多孔镍的物相组成、孔隙特征和力学性能进行检测和分析。研究烧结温度、造孔剂PMMA含量和粒径对多孔镍的孔结构和力学性能的影响。结果表明,随烧结温度升高,多孔镍孔隙率减小,孔径变小,力学性能升高;随造孔剂PMMA含量和粉末粒径增大,孔隙率增加,孔径增大,力学性能下降。在烧结温度为800℃,PMMA体积分数为80%、粉末粒径为5μm条件下制备的多孔镍综合性能最佳,孔隙率为71.9%,平均孔径为2.37μm,抗弯强度和抗压强度分别为25.3 MPa和8.7 MPa。  相似文献   

9.
采用粉末冶金添加造孔剂法制备多孔Ti-Nb合金,研究不同Nb含量对合金物相结构、微观孔隙形貌、孔隙率、抗压强度及耐腐蚀性能的影响.研究结果表明:多孔Ti-Nb合金具有α和β双相组织,随Nb含量的增加,材料中的β相含量逐渐增大,Nb含量为25%~ 30%时材料的孔隙大小和分布较均匀,平均孔径为300 μm左右;随Nb含量的增加,材料的孔隙率随之增大,径向收缩率和抗压强度逐渐减小,耐腐蚀性呈先增大后减小趋势,在Nb含量30%时材料的耐腐蚀性最强,其孔隙率为33.6%,径向收缩率为7.3%,抗压强度为130 MPa.  相似文献   

10.
采用熔体发泡法制备多孔泡沫钢,成功制备出了孔隙率为44.6%的泡沫钢,同时分析了钢液的粘度对泡沫钢内部孔的形状、尺寸的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号