首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以苯乙烯(St)、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)为主要组分,合成了一种重油专用破乳剂,红外光谱表征表明,所合成的破乳剂为St、BA、MMA、AA共聚物;在研究单因素变化对产物性能影响的基础上,采用正交设计实验确定各单体配比为St25%,BA32%,MMA35%,AA8%(质量分数);合成的破乳剂在重油中质量分数为2.50×10-4时,水洗后重油钾钠质量分数为8.0×10-7,且油水界面清晰,污水无色透明.  相似文献   

2.
The relatively poor mechanical properties of conventional synthetic hydrogels are illustrated and compared with those of articular cartilage. By using the composite structure of the natural material as a model a new family of hydrogels, based on interpenetrating polymer network (IPN) technology, has been developed. The underlying synthetic strategies are discussed and the properties of a novel representative network presented. IPN formation produces networks that are stiffer and stronger than the hydrogel copolymers of similar water content. In this behaviour these simple IPNs begin to mimic the properties of biological hydrogel composites. Thus, these materials have exciting potential for demanding in vivo applications.  相似文献   

3.
Articular cartilage exhibits anisotropic mechanical properties when subjected to tension. However, mechanical anisotropy of mature cartilage in compression is poorly known. In this study, both confined and unconfined compression tests of cylindrical cartilage discs, taken from the adult human patello-femoral groove and cut either perpendicular (normal disc) or parallel (tangential disc) to the articular surface, were utilized to determine possible anisotropy in Young's modulus, E, aggregate modulus, Ha, Poisson's ratio, v and hydraulic permeability, k, of articular cartilage. The results indicated that Ha was significantly higher in the direction parallel to the articular surface as compared with the direction perpendicular to the surface (Ha = 1.237 +/- 0.486 MPa versus Ha = 0.845 +/- 0.383 MPa, p = 0.017, n = 10). The values of Poisson's ratio were similar, 0.158 +/- 0.148 for normal discs compared with 0.180 +/- 0.046 for tangential discs. Analysis using the linear biphasic model revealed that the decrease of permeability during the offset compression of 0-20 per cent was higher (p = 0.015, n = 10) in normal (from 25.5 x 10(-15) to 1.8 x 10(-15) m4/N s) than in tangential (from 12.3 x 10(-15) to 1.3 x 10(-15) m4/N s) discs. Based on the results, it is concluded that the mechanical characteristics of adult femoral groove articular cartilage are anisotropic also during compression. Anisotropy during compression may be essential for normal cartilage function. This property has to be considered when developing advanced theoretical models for cartilage biomechanics.  相似文献   

4.
The aim of this work was to investigate how specificities of thin films prepared from aqueous polymer colloids (latexes) influence their friction properties, tested with a sliding stainless steel spherical tip. Two acrylic latexes containing either 1 wt% or 4 wt% of acrylic acid (AA) were used at pH 2 or 10. Bulk mechanical properties were also studied in order to improve the interpretation of friction results. Increasing AA concentration and pH increases the overall film rigidity, pH being more effective than AA concentration. Contact pressures are directly correlated to bulk mechanical properties whereas surface shear stresses are also strongly influenced by molecular interactions with the sliding tip. Friction coefficients are rather high, peaking at 5, because of important viscoelastic dissipation in the films as well as strong polar interactions introduced by AA, especially at high pH. The paper also addresses the question of the relevant characteristic length in this kind of friction study.  相似文献   

5.
Many experimental protocols for investigating articular cartilage mechanics have involved the use of a freeze-thaw cycle for storage or tissue manipulation. It was hypothesized that mechanical properties are altered due to freeze-thaw cycling. The aim of this study, therefore, was to examine the possibility of protocol-induced artefacts in the mechanical properties of porcine articular cartilage specimens related specifically to freeze-thaw events. Twenty-eight osteochondral specimens [14 from the femoral condyles (FCs) and 14 from the patella-femoral (PF) groove] were tested in confined compression before and after being frozen at -20 degrees C for 7 days. The fluid-independent and fluid-dependent mechanical properties (aggregate modulus of the solid phase and the half-life of stress relaxation respectively) were determined and compared. The aggregate modulus decreased by 13.5 per cent and 20.1 per cent for the PF and FC regions respectively (p = 0.002) and the half-life of the stress relaxation at 10 per cent strain decreased by 6.4 per cent and 12.6 per cent for the PF and FC specimens respectively (p = 0.0341). In conclusion, it has been shown that the protocol used, which involved freezing to -20 degrees C and thawing after 7 days, caused artefacts in the mechanical properties of porcine osteochondral specimens. It is suggested that protocols requiring freezing must be critically reviewed to eliminate such artefacts.  相似文献   

6.
To extend the durability of artificial joints, biomimetic artificial hydrogel cartilage is proposed as a way of improving the lubrication mechanism in artificial joints. The application of hydrogels with properties similar to those of articular cartilage can be expected to duplicate the superior load-carrying capacity and lubricating ability of natural synovial joints. Frictional behaviors with three kinds of poly(vinyl alcohol) (PVA) hydrogels with high water content were examined in reciprocating tests. Interstitial fluid pressure, von Mises stress and fluid flow were compared in biphasic finite element analysis, and frictional behavior was evaluated in terms of biphasic lubrication and surface lubricity. Hybrid gel prepared by a combination of cast-drying and freeze-thawing methods showed superior low friction.  相似文献   

7.
Therapeutic lubricant injections of hyaluronic acid are a relatively recent treatment for osteoarthritis. Their efficacy, however, in vivo has been subject to much debate. Frictional properties of cartilage-cartilage contacts under both static and dynamic loading conditions have been investigated, using healthy cartilage and cartilage with a physically disrupted surface, with and without the addition of a therapeutic lubricant, hyaluronic acid. Most of the cartilage friction models produced typical time-dependent loading curves, with a rise in static friction with loading time. For the dynamic loading conditions the rise in friction with loading time was dependent on the spatial (and time) variation in the load on the cartilage plate. For sliding distances of 4 mm or greater, when the cartilage plate was unloaded during sliding, the dynamic friction remained low whereas, with shorter sliding distances, the dynamic friction increased with increasing loading time. Static friction was higher than dynamic friction (under the same tribological conditions). The 'damaged' cartilage models produced higher friction than healthy cartilage under equivalent tribological conditions. It was shown that hyaluronic acid was an effective boundary lubricant for articular cartilage under static conditions with both healthy and damaged cartilage surfaces. Hyaluronic acid was less effective under dynamic conditions. However, these dynamic conditions had low friction values with the control lubricant because of the effectiveness of the intrinsic biphasic lubrication of the cartilage. It was only under the tribological conditions in which the cartilage friction was higher and rising with increasing loading time because of depletion of the intrinsic biphasic lubrication, that the role of hyaluronic acid as an effective therapeutic lubricant was demonstrated.  相似文献   

8.
透明亲水丙烯酸树脂防雾材料的制备及研究   总被引:1,自引:0,他引:1  
通过溶液聚合的方法制备了防雾材料亲水丙烯酸树脂。通过试验比较,得到了最佳工艺条件,软单体为丙烯酸乙酯,硬单体为甲基丙烯酸甲酯,官能单体则以丙烯酸、甲基丙烯酸为最佳,辅助官能单体为甲基丙烯酸β-羟乙酯。交联体系采用自交联体系,交联剂采用含有亲水氨基的N-羟甲基丙烯酰胺,交联剂与羧酸质量比为4∶1;交联固化温度100℃,固化时间40 min。由此制备的防雾树脂具有优良的水溶性和防雾性。  相似文献   

9.
Porous hydrogels were made from silk fibre as potential materials for cartilage repair. The aim was to develop materials which mimicked the tribological behaviour of cartilage, with controlled pore-sizes and optimised mechanical properties. Mechanical tests showed hydrogels had a comparable compressive modulus to cartilage, with stiffness improved by decreasing pore size. Under static loading and during shear hydrogels demonstrated significant interstitial fluid support. Friction testing showed the hydrogels had a cartilage-like frictional response, dominated by this interstitial fluid support. Silk hydrogels showed little wear, early signs of which were changes in surface morphology that did not correlate with the equilibrium friction coefficient. Consequently both wear and friction should be monitored when assessing the tribological performance of hydrogels.  相似文献   

10.
The objective of this study is to investigate the effect of different Atomic Force Microscope (AFM) tip geometries (sharp-conical and spherical tips) on the microscale Young’s modulus of bovine articular cartilage and agarose gel that is calculated by the method of the average point-wise modulus. The measurements of the microscale Young’s moduli of 3% agarose gel under a conical AFM tip (20.9±4.9 kPa) and under a spherical AFM tip (17.5±3.0 kPa), averaged over an indentation depth of 600 nm, were comparable. However, the microscale Young’s moduli of articular cartilage, as measured with a conical AFM tip (116.9±62.9 kPa), were significantly higher than the corresponding values under a spherical AFM tip (30.9±14.3 kPa). The results of the current study suggest that the AFM tip geometry affects the microscale measurements of the mechanical properties on the surfaces of biological materials. The findings of the study can help to elucidate more accurately the microscale mechanical properties on the surface layers of diverse biological materials including tissue-engineered cartilages with different material characteristics.  相似文献   

11.
In this work, the hypothesis that water content and substances present on the articular surface play an important role in lubrication through the formation of a layer with a high content of water on the articular surface is analysed. The hydrophilic properties of proteoglycans exposed at the articular surface and hydration of tissue are the main responsible factors for the formation of this layer. The role of the articular surface in the frictional characteristics of articular cartilage was examined using specimens (femoral condyles of pigs) with intact and wiped surfaces tested in intermittent friction tests. Results indicated that the intact condition presented low friction in comparison with the wiped condition. The measured water loss of the articular cartilage after sliding and loading indicated a gradual decrease in the water content as the time evolved, and rehydration was observed after the submersion of unloaded specimens in the saline bath solution. Micrographic analyses indicated the presence of a layer covering the articular surface, and histological analyses indicated the presence of proteoglycans in this superficial layer. The hydration of the cartilage surface layer and proteoglycan in this layer influence lubrication.  相似文献   

12.
Development of artificial articular cartilage   总被引:7,自引:0,他引:7  
Attempts have been made to develop an artificial articular cartilage on the basis of a new viewpoint of joint biomechanics in which the lubrication and load-bearing mechanisms of natural and artificial joints are compared. Polyvinyl alcohol hydrogel (PVA-H), 'a rubber-like gel', was investigated as an artificial articular cartilage and the mechanical properties of this gel were improved through a new synthetic process. In this article the biocompatibility and various mechanical properties of the new improved PVA-H is reported from the perspective of its usefulness as an artificial articular cartilage. As regards lubrication, the changes in thickness and fluid pressure of the gap formed between a glass plate and the specimen under loading were measured and it was found that PVA-H had a thicker fluid film under higher pressures than polyethylene (PE) did. The momentary stress transmitted through the specimen revealed that PVA-H had a lower peak stress and a longer duration of sustained stress than PE, suggesting a better damping effect. The wear factor of PVA-H was approximately five times that of PE. Histological studies of the articular cartilage and synovial membranes around PVA-H implanted for 8-52 weeks showed neither inflammation nor degenerative changes. The artificial articular cartilage made from PVA-H could be attached to the underlying bone using a composite osteochondral device made from titanium fibre mesh. In the second phase of this work, the damage to the tibial articular surface after replacement of the femoral surface in dogs was studied. Pairs of implants made of alumina, titanium or PVA-H on titanium fibre mesh were inserted into the femoral condyles. The two hard materials caused marked pathological changes in the articular cartilage and menisci, but the hydrogel composite replacement caused minimal damage. The composite osteochondral device became rapidly attached to host bone by ingrowth into the supporting mesh. The clinical implications of the possible use of this material in articular resurfacing and joint replacement are discussed.  相似文献   

13.
Articular cartilage from below the surface of the femoral head of the hip joint shows a profound age-dependent weakening in its tensile mechanical properties. This ageing is also associated with a reduced viscoelastic response in the older tissue. A constitutive model of the viscoelastic behaviour of deep articular cartilage (as discussed by Egan in 1988) is used to generate a graphical pattern which represents the mechanical behaviour. This constitutive approach suggests that the tensile weakening of the older cartilage is due to an age-related reduction in the recruitment of load-carrying structures as the tissue is deformed. The viscoelastic constitutive model also predicts a reduction in the tensile strength of deep articular cartilage with rate of deformation. This prediction is supported by experimental fracture stress data. A weakening of the tensile integrity of the microstructure of articular cartilage could make the tissue less able to sustain normal compressive physiological loading without damage and thus make the tissue more susceptible to osteoarthritic degeneration. The constitutive approach indicates that the weakening of the older tissue may be related to changes within the microstructure which determine how applied mechanical energy is stored and dissipated.  相似文献   

14.
This paper describes the development and use of an instrument mechanically to impact bovine articular cartilage and record the event using a piezoelectric accelerometer, as well as to carry out post-impact characterization of the tissue. Two levels of impact (low: 6 cm drop height, 18.4 N tup; high: 10 cm drop height, 27.8 N tup) were chosen such that the former did not show gross damage upon inspection, while the latter showed substantial gross damage. Peak stress, time to peak stress, and impact duration were taken from data recorded by the instrument. Three cartilage biomechanical properties (aggregate modulus, Poisson's ratio, and permeability) were acquired by creep indentation, and tissue morphology rated on a standardized scale was also determined. When subjected to the high level of impact, articular cartilage showed statistically significant (p < 0.05) differences in all three impact metrics and morphology. This high level of impact also resulted in a 37 per cent decrease in the aggregate modulus of the tissue. Lower drop heights resulted in more consistent impact curves, demonstrated less standard deviation, and did not change the biomechanical properties of the tissues. With the instrument and techniques described in this study, articular cartilage can be subjected to specific levels of impact in order to study injury biomechanics of the tissue at specific levels of mechanical damage.  相似文献   

15.
综述了近年来国内外人工关节材料及其摩擦学性能的研究现状和进展,重点介绍评述了聚合物基关节材料的增强方法与实际应用。大量的研究结果表明,提高人工关节材料抗磨损性能的主要途径还是对材料进行复合以及表面改性。不同的处理参数对材料抗磨损性能有很大影响,合理地选择处理方法可以很大程度上提高材料的抗磨损性能。对人工关节软骨的研究作了简要的介绍,对今后的研究重点提出了建议。  相似文献   

16.
Glycosaminoglycans (GAGs) have been shown to be responsible for the interstitial fluid pressurization of articular cartilage and hence its compressive stiffness and load-bearing properties. Contradictory evidence has been presented in the literature on the effect of depleting GAGs on the friction properties of articular cartilage. The aim of this study was to investigate the effect of depleting GAGs on the friction and deformation characteristics of articular cartilage under different tribological conditions. A pin-on-plate machine was utilized to measure the coefficient of friction of native and chondroitinase ABC (CaseABC)-treated articular cartilage under two different models: static (4 mm/s start-up velocity) and dynamic (4 mm/s sliding velocity; 4 mm stroke length) under a load of 25 N (0.4 MPa contact stress) and with phosphate-buffered saline as the lubricant. Indentation tests were carried out at 1 N and 2 N loads (0.14 MPa and 0.28 MPa contact stress levels) to study the deformation characteristics of both native and GAG-depleted cartilage samples. CaseABC treatment rendered the cartilage tissue soft owing to the loss of compressive stiffness and a sulphated-sugar assay confirmed the loss of GAGs from the cartilage samples. CaseABC treatment significantly increased (by more than 50 per cent) the friction levels in the dynamic model (p < 0.05) at higher loading times owing to the loss of biphasic lubrication. CaseABC treatment had no effect on friction in the static model in which the cartilage surfaces did not have an opportunity to recover fluid because of static loading unlike the cartilage tissue in the dynamic model, in which translation of the cartilage surfaces was involved, ensuring effective biphasic lubrication. Therefore the depletion of GAGs had a smaller effect on the coefficient of friction for the static model. Indentation tests showed that GAG-depleted cartilage samples had a lower elastic modulus and higher permeability than native tissue. These results corroborate the role of GAGs in the compressive and friction properties of articular cartilage and emphasize the need for developing strategies to control GAG loss from diseased articular cartilage tissue.  相似文献   

17.
Articular cartilage is a complex soft tissue that performs multiple functions in the joint. In particular, the amorphous layer that covers the surface of articular cartilage is thought to play some role in lubrication. This study aimed to characterize the surface amorphous layer (SAL) using a variety of techniques, including environmental scanning electron microscopy, transmission electron microscopy, white light interferometry, and biochemical analysis of its composition. Friction tests were conducted to investigate the role of the SAL in lubrication. A protocol to remove successfully the SAL without damaging the underlying cartilage was developed and the material removed from healthy cartilage was found to contain approximately equal quantities of glycosaminoglycan (GAG), protein, and lipid. Cartilage-on-cartilage friction tests were conducted on fresh, healthy cartilage with and without the SAL, under both dynamic and static operating conditions. Removal of the SAL was not found to change the friction coefficient. However, subsequent staining of specimens indicated that the SAL had replenished during the test following loading. The replenished SAL was characterized and found to contain lipids and sulphated GAGs with undetectable protein. This study revealed experimental evidence of surface layer replenishment in articular cartilage. It was postulated that the surface layer regeneration mechanism was purely mechanical and associated with movement of GAGs and lipids through the cartilage matrix during deformation, since the experimental set-up did not contain any means of biochemical activation.  相似文献   

18.
Investigations into tissue-preserving orthopaedic treatments should consider the tribology of articular cartilage; where simulations using animal joints are a predominant choice. However, very few studies have investigated the differences between human and animal cartilage. The aim of the present study was to characterise the differences in geometry and mechanical properties of human, porcine, bovine and ovine articular cartilage. Creep indentation was performed on osteochondral plugs taken from the superior region of femoral heads of all these species. Cartilage thickness was measured via the resistive force change of a needle descending through cartilage and bone. A biphasic finite element model was used to derive equilibrium elastic modulus and permeability. Results showed that human cartilage was significantly thicker than all other species tested. A positive correlation was found between femoral head diameter and cartilage thickness when comparing between species of quadrupeds. Human cartilage had the largest equilibrium elastic modulus, which was significant when comparing against porcine and bovine. However, porcine cartilage had significantly lower permeability. Significant differences in geometry and mechanical properties of articular cartilage were found between all species tested. It is necessary to consider these variations when choosing animal tissue to represent human.  相似文献   

19.
Combination of theoretical biphasic analyses and corresponding experimental measurements for articular cartilage has successfully revealed the fundamental material properties and time-depending mechanical behaviors of articular cartilage containing plenty of water. The insight of load partitioning between solid and fluid phases advanced the prediction of the frictional behavior of articular cartilage. One of the recent concerns about biphasic finite element (FE) analysis seems to be a dynamic and physiological condition in terms of mechanical functionality as a load-bearing for articular joint system beyond material testing, which has mainly focused on time-dependent reaction force and deformation in relatively small and low speed compression. Recently, the biphasic FE model for reciprocating sliding motion was applied to confirm the frictional effect on the migrating contact area. The results indicated that the model of a cylindrical indenter sliding over the cartilage surface remarkably sustained the higher proportion of fluid load support than a condition without migrating contact area, but the effectiveness of constitutive material properties has not been sufficiently evaluated for sliding motion. In our present study, at the first stage, the compressive response of the articular cartilage was examined by high precision testing machine. Material properties for the biphasic FE model, which included inhomogeneous apparent Young's modulus of solid phase along depth, strain-dependent permeability and collagen reinforcement in tensile strain, were estimated in cylindrical indentation tests by the curve fitting between the experimental time-dependent behavior and FE model simulation. Then, the biphasic lubrication mechanism of the articular cartilage including migrating contact area was simulated to elucidate functionality as a load-bearing material. The results showed that the compaction effect on permeability of solid phase was functional particularly in the condition without the migrating contact area, whereas in sliding condition the compaction effect did not clearly show its role in terms of the proportion of fluid load support. The reinforcement of solid phase, which represented the collagen network in the tissue, improved the proportion of fluid load support especially in the sliding condition. Thus, a functional integration of constitutive mechanical properties as a load-bearing was evaluated by FE model simulation in this study.  相似文献   

20.
The stiffness of articular cartilage increases dramatically with increasing rate of loading, and it has been hypothesized that increasing the stiffness of the subchondral bone may result in damaging stresses being generated in the articular cartilage. Despite the interdependence of these tissues in a joint, little is understood of the effect of such changes in one tissue on stresses generated in another. To investigate this, a parametric finite element model of an idealized joint was developed. The model incorporated layers representing articular cartilage, calcified cartilage, the subchondral bone plate and cancellous bone. Taguchi factorial design techniques, employing a two-level full-factorial and a four-level fractional factorial design, were used to vary the material properties and thicknesses of the layers over the wide range of values found in the literature. The effects on the maximum values of von Mises stress in each of the tissues are reported here. The stiffness of the cartilage was the main factor that determined the stress in the articular cartilage. This, and the thickness of the cartilage, also had the largest effect on the stresses in all the other tissues with the exception of the subchondral bone plate, in which stresses were dominated by its own stiffness. The stiffness of the underlying subchondral bone had no effect on the stresses generated in the cartilage. This study shows how stresses in the various tissues are affected by changes in their mechanical properties and thicknesses. It also demonstrates the benefits of a structured, systematic approach to investigating parameter variation in finite element models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号