首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the molecular mobility of agar were measured by pulsed-field-gradient stimulated echo (PFG-STE) 1H NMR at various temperatures in order to elucidate the mechanism of gelation in solutions. The echo signal intensity of agar decreased steeply and the diffusion coefficient D of agar increased near the sol-to-gel transition temperature Ts-g, and D decreased with further cooling. These results suggested that the polysaccharide chains in agar aggregated in bundles to form a network at around Ts-g. High molecular weight chains aggregated preferentially in agar, with the soluble, non-aggregated agar (“solute agar”) left in the network forming loose aggregates upon further cooling. Evidence for this behavior was obtained from GPC measurements on the solute agar squeezed from the gel. These loose aggregates readily disassociated on reheating, whereas the aggregated bundles were quite thermally stable, which corresponded well with the thermal stability of the gel strength. The changes in the restrictions on molecular mobility in these solutions were evaluated from measurements of D of a dendrimer added as a probe molecule, which was sensitive to the dilution of the solute agar accompanying gelation. The hydrodynamic shielding length ξ, which was considered to represent the hydrodynamic mesh size created by the solute agar, was calculated from D of the dendrimer, shedding light on the changes in the microscopic environment during gelation.  相似文献   

2.
Evolution of microstructure during heat-induced gelation of β-lactoglobulin (β-LG) was investigated in situ using confocal laser scanning microscopy at various gel-preparation conditions: pH = 2, 5, and 7; protein content = 5, 10, and 15%; and salt (NaCl) content = 0, 0.1, and 0.3 M. The number and area of evolving β-LG clusters were observed as a function of time and temperature and the data were fitted to a log-normal model and sigmoid model, respectively. The gelation temperature (Tgel) of the β-LG system was determined from both the number (Tgel/N) and total area (Tgel/A) of β-LG clusters versus temperature data. The range of Tgel/N and Tgel/A values for all the cases was 68 to 87°C. The effect of pH was the most dominant on Tgel/N and Tgel/A, whereas the effects of β-LG and salt contents were also statistically significant. Therefore, the combined effect of protein concentration, pH, and salt content is critical to determine the overall gel microstructure and Tgel. The Tgel/N and Tgel/A generally agreed well with Tgel determined by dynamic rheometry (Tgel/R). The correlations between Tgel/N and Tgel/A versus Tgel/R were 0.85 and 0.72, respectively. In addition, Tgel/N and Tgel/A values compared well with Tgel/R values reported in the literature. Based on these results, Tgel/N determined via in situ microscopy appears to be a fairly good representative of the traditionally measured gelation temperature, Tgel/R.  相似文献   

3.
Gelation and microstructure of dilute gellan solutions with calcium ions   总被引:1,自引:0,他引:1  
The viscoelasticity at 25 °C and microstructure of 0.02–0.07 wt% of low acyl gellan aqueous media were investigated for ratios of Ca2+ to gellan in the range of 0–38.8, using small amplitude oscillatory shear rheometry and confocal laser scanning microscopy (CLSM), respectively. The total ionic concentration (CT = γ CP + CS, being CP and CS the gellan and calcium concentrations, respectively, and γ the mean activity coefficient) of the systems was found to be the triggering and critical factor for the gelation and elasticity of gellan systems. The gel point (Tgel) and storage moduli (G′) increased upon increasing CT. However, G′ showed a maximum for CT = 9.3 ± 1.2 meq/L, followed by a progressive reduction as CT increased; this was primarily due to further addition of calcium, as CP had a low contribution to CT of the systems. CLSM demonstrated that the level of counter-ions was enough to induce the formation of a network, whose connection depended on CP and whose reinforcement was ion dependent. Therefore, even at very low levels of gellan, it is possible to create a wide spectrum of viscoelastic behaviors going from structured liquids to strong gels through the specific combinations of gellan and cation concentrations.  相似文献   

4.
Hydrodynamic properties of aqueous wx corn starch (native, un‐pregelatinised) dispersions treated in a dedicated single‐mode microwave reactor at temperatures ranging from 180 to 210°C were determined using asymmetrical flow field‐flow fractionation coupled with an RI detector. The dedicated microwave reactor enabled the fine control and monitoring of heating parameters (especially temperature) during the treatment. The translational diffusion co‐efficient and hydrodynamic radii (Rh) values determined for wx corn starch treated at 180 and 200°C indicate that the majority of the material (∼98%) consisted of highly mobile, small and compact molecules/particles, with Rh values ranging from 10 to 90 nm, while the remaining ∼2% of the material consisted of considerably larger molecules/particles Rh values ranging from ∼100 to ∼200 nm). Degradation of wx corn starch was observed at 210°C.  相似文献   

5.
Measurement of Gelpoint Temperature and Modulus of Pectin Gels   总被引:1,自引:0,他引:1  
Methods which permit the measurement of gelpoint (setting) temperature (Tgel) and rigidity modulus (G) of pectin gels were improved. Gel development on cooling was determined with an oscillatory pressure testing device capable of detecting a modulus as low as 3 Pa and strain values no greater than 5∞10?3. Sample was set in a glass “U” tube during pressure oscillatory assay for Tgel determination, and transferred after gelling in the same tube for G modulus determination with modified Saunders-Ward apparatus. Results confirmed rheological behavior reported for these kinds of gels and compared favorably with small amplitude oscillatory measurements performed with a stress controlled rheometer using cone and plate (4°, dia = 4 cm) geometry at different frequencies (0.5 to 1.5 Hz) and cooling rates (1 to 3°C/min).  相似文献   

6.
The physicochemical, thermal, pasting and gel textural properties of corn starches from different corn varieties (African Tall, Ageti, Early Composite, Girja, Navjot, Parbhat, Partap, Pb Sathi and Vijay) were studied. Amylose content and swelling power of corn starches ranged from 16.9% to 21.3% and 13.7 to 20.7 g/g, respectively. The enthalpy of gelatinization (ΔHgel) and percentage of retrogradation (%R) for various corn starches ranged from 11.2 to 12.7 J/g and 37.6% to 56.5%, respectively. The range for peak viscosity among different varieties was between 804 and 1252 cP. The hardness of starch gels ranged from 21.5 to 32.3 g. African Tall and Early Composite showed higher swelling power, peak, trough, breakdown, final and setback viscosity, and lower ΔHgel and range of gelatinization. Pearson correlations among various properties of starches were observed. Gelatinization onset temperature (To) was negatively correlated to peak-, breakdown-, final- and setback viscosity (r = −0.809, −0.774, −0.721 and −0.686, respectively, p < 0.01) and positively correlated to pasting temperature (r = 0.657, p < 0.01). ΔHgel was observed to be positively correlated with To, peak gelatinization temperature and (Tp) and gelatinization conclusion temperature Tc (r = 0.900, 0.902 and 0.828, respectively, p < 0.01) whereas, it was negatively correlated to peak- and breakdown- (r = −0.743 and −0.733, respectively, p < 0.01), final- and setback viscosity (r = −0.623 and −0.611, respectively, p < 0.05). Amylose was positively correlated to hardness (r = 0.511, p < 0.05) and gumminess (r = 0.792, p < 0.01) of starch gels.  相似文献   

7.
Thermogravimetry/derivative thermogravimetry (TG/DTG), rheometry and differential scanning calorimetry (DSC) were used to study the thermal stability and determine the transition temperatures of the sodium and potassium salts of high‐acyl gellan (HAG) in the presence of 0–100 mm NaCl and KCl, respectively. TG/DTG revealed the potassium gellan (KHAG) gels to be more stable than those of sodium gellan (NaHAG), regardless of external cation concentration. Rheometry and DSC showed the melting (Tm) and gelling (Tg) temperatures to increase with cation concentration. The DSC peak temperatures showed thermal hysteresis contrary to rheometry. In most cases, DSC revealed KHAG to exhibit higher Tm and Tg than NaHAG. Consequently, thermal characteristics of NaHAG and KHAG gels depend on the size of the external cation and its ability to coordinate water molecules. Cation salts of HAG exhibit significantly lower transition temperatures than the commercial preparation from which they were produced.  相似文献   

8.
A parametric analysis was performed to examine the influence of several factors on stress crack formation in cylindrical food during drying using a previously developed, validated simulation method. They included initial food moisture (Wo), air humidity (Rh) and temperature (Ta), convective surface mass transfer coefficient (hm), convective surface heat transfer coefficient (ht), moisture diffusivity (Dw), and initial food diameter (do). Rh influenced most strongly drying time for crack formation (tcf), followed by Ta and Wo. The other 4 parameters in descending order of influence were hm, ht, do and Dw. The influence of all parameters, except Wo, was due to their influence on mass transfer Biot number, Bim, that was closely related to moisture concentration gradient in food. The influence of Wo was due to increased critical stress for crack formation with a reduced moisture level.  相似文献   

9.
The effects of cooling rate, holding temperature, pH and polysaccharide concentration on gelation characteristics of gelatin and gelatin–polysaccharide mixtures were investigated using a mechanical rheometer which monitored the evolution of G′ and G″. At low holding temperatures of 0 and 4 °C, elastic gelatin gels were formed whereas a higher holding temperature of 10 °C produced less elastic gels. At slow cooling rates of 1 and 2 °C/min, gelling was observed during the cooling phase in which the temperature was decreased from room temperature to the holding temperature. On the other hand, at higher cooling rates of 4 and 8 °C/min, no gelation was observed during the cooling phase. Good gelling behavior similar to that of commercial Strawberry Jell-O® Gelatin Dessert was observed for mixtures of 1.5 and 15 g sucrose in 100 ml 0.01 M citrate buffer containing 0.0029–0.0066 g low-acyl gellan. Also, these mixed gels were stronger than Strawberry Jell-O® Gelatin Desserts as evidenced by higher G′ and gel strength values. At a very low gellan content of 0.0029 g, increasing pH from 4.2 to 4.4 led to a decrease in the temperature at the onset of gelation, G′ at the end of cooling, holding and melting as well as an increase in gel strength. The gelation time was found to decrease to about 40 min for gelatin/sucrose dispersions in the presence of 0.0029 g gellan at pH 4.2 whereas the corresponding time at pH 4.4 was higher (79 min). In general, the gelation time of gelatin/sucrose dispersions decreased by a factor of 2 to 3 in the presence of low-acyl gellan. The addition of low-acyl gellan resulted in an increase in the gelation rate constant from 157.4 to 291 Pa. There was an optimum low-acyl gellan content for minimum gelation time, this optimum being pH dependent. Addition of guar gum also led to a decrease in gelation time to 73 min with a corresponding increase in the gelation rate constant to 211 Pa/min though these values were not sensitive to guar gum content in the range of 0.008–0.05 g. The melting temperature of gelatin/sucrose/gellan as well as gelatin/sucrose/guar mixtures did not differ significantly from that of pure gelatin or Strawberry Jell-O® Gelatin Desserts. At pH 4.2, the melting rate constant was highest at a low-acyl gellan content of 0.0029 g whereas the rate constant was insensitive to low-acyl gellan content at pH 4.4. Addition of guar did not seem to affect the melting temperature or the melting rate constant.  相似文献   

10.
Commercial maize starches and potato starches of two cultivars differing in physicochemical composition (granule size distribution; amylose to amylopectin ratio) and crystallinity were heated to 180 °C and then cooled by fast quench using a differential scanning calorimeter (DSC), in order to produce spherulitic starch morphologies. Among the raw maize starches, waxy maize starch had highest relative crystallinity (49%) whereas a lowest crystallinity of 33–39% was calculated for high-amylose maize starches. Potato starches showed a relative crystallinity of 50%. The temperatures and enthalpies of gelatinisation and melting varied among all the starches. High-amylose maize starches showed higher transition temperatures of gelatinisation (Tgel), whereas waxy maize starch had lowest Tgel and enthalpy of gelatinisation (ΔHgel). Similarly, a considerable variation in parameters related with crystalline melting (Tm1, Tm2 and ΔHm1, ΔHm2) was observed for different starches. The superheated gels of different starches treated using DSC were subjected to polarised microscopy, to confirm the formation of spherulites. Both the high-amylose starch gels showed the presence of spherulites exhibiting birefringence and a weak crystalline pattern. No birefringence was observed for waxy maize starch gel, while potato starch gels had some birefringence. The particle size distribution of high-amylose maize starch gels analysed through Zetasizer showed the sizes of spherulitic particles fall in the range of 300 nm–900 nm. The scanning electron micrographs of the dried high-amylose maize starch gels showed the presence of round spherulites consisting of several aggregated spherulitic particles. Amylose content and melting of crystallites during heating play an important role during recrystallisation of amylose (spherulite morphologies).  相似文献   

11.
Thermal stability, by means of air drying a furcellaran powder, and its impact on gel strength and cation mobility were studied. Halogen heating in the temperature range 90–115°C for 15 min resulted in loss on drying (LD, %). These results can be described by polynom LD=−9.583+2.989τ−0.249τ2+0.00729τ3+0.1034t (R2=0.9976), indicating a gradual decomposition of carbohydrates. Air-drying induced a decrease in gel strength and the partial removal of potassium, calcium and sodium ions from the matrix. Air drying above 115°C yielded a remarkable destruction of polysaccharides with a total collapse in gelling power.  相似文献   

12.
The starches separated from four different Dioscorea opposita Thunb. cultivars were investigated for morphological, thermal, crystal, and physicochemical properties, such as amylose content, swelling power, solubility and water-binding capacity properties. Amylose content of D. oppositastarches from different cultivars ranged from 20.74% to 25.94%. The shape of starch granules separated from different D. opposita Thunb. cultivars varied from round to oval or elliptic. The mean particle diameter of starches ranged from 23.39 to 26.87 μm. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) were determined using differential scanning calorimetry (DSC). To, Tp and Tc varied from 73.6 to 74.8, 78.8 to 81.0, and 83.3 to 87.2 °C, respectively. D. opposita cv. Jinchengerhao starch showed the highest ΔHgel values (12.48 J/g) while D. opposita cv. Baiyu starch showed the lowest values (8.413 J/g). The crystal type of starches separated from different D. opposita cultivars was a typical CB-type pattern. The degrees of crystallinity of the four D. opposita cultivars starches were about 50.52%, 32.99%, 33.57% and 36.16%, respectively.  相似文献   

13.
Edible films based on gellan were developed. Of the plasticizers tested, glycerol was found to be the most suitable with respect to mechanical properties and transparency. The mechanical properties (tensile and puncture), water vapour permeability (WVP) and glass transition temperature (Tg) were examined for gellan films as a function of glycerol concentration. The lowest effective glycerol concentration was ∼60% (film dry weight basis); below this concentration, the films tended to be brittle and difficult to handle, whereas films with more than ∼75% glycerol tended to be sticky. Addition of glycerol to gellan films increased extensibility (tensile elongation and puncture deformation) moderately, but decreased tensile strength, elastic modulus and Tg, and increased WVP of the films. Increasing the aw caused marked decreases in tensile strength and elastic modulus, but decreased tensile elongation only slightly. In general, tensile strength and elastic modulus appeared to be more sensitive to changes in glycerol content and aw than puncture strength.  相似文献   

14.
The thermal characteristics, dynamics of gelation and gel properties of commercial whey protein concentrate (WPC), WPC/λ-carrageenan (λ-C) mixtures (M) and WPC/λ-C spray-dried mixtures (DM) have been characterized. In a second stage, the effect of the gelling variables (T, pH, total solid content) on gelation and textural properties of DM was evaluated through a Doehlert uniform shell design.The presence of λ-C either in mixtures (M) or in DM promoted the WPC gelation at lower concentration (8%). M showed higher rates of formation and better gel properties (higher hardness, adhesiveness, springiness and cohesiveness) than DM.Nevertheless, when the effects of pH (6.0–7.0), heating temperature (75–90 °C) and total solid content (12–20 wt%) on gelation dynamics and gel properties of DM were studied, gels with a wide range of rheological and textural properties were obtained. While pH did not affect the gelation dynamics, it had some effect on rheological and textural properties. Total solid content and heating temperature were the most important variables for the dynamics of gelation (gelation rate (1/tgel), gelation temperature (Tgel), rate constant of gel structure development (kG), elastic modulus after cooling (Gc) and textural parameters (hardness, springiness and cohesiveness).  相似文献   

15.
Pullulan, which is comprised of glucose units, is a simple linear polysaccharide produced by Aureobasidium pullulans. Pullulan has long been used in various applications such as blood plasma substitutes, food additives, adhesive additives, flocculants, and even environmental pollution control agents. Mathematical models of biomass, pullulan, and sucrose profiles during fermentation not only provide information about the kinetic-metabolic nature of pullulan, but also facilitate the control and optimization of pullulan production. In this study, several models were modified and tested in order to describe biomass, pullulan, and sucrose profiles during batch fermentation using a color variant strain of A. pullulans. The results demonstrated that the modified Gompertz model can serve as a universal equation to fit biomass production, pullulan production, and sucrose consumption. Furthermore, validation of this modified Gompertz model indicated that biomass (slope = 1.00, R2 = 0.991), pullulan (slope = 1.10, R2 = 0.991), and sucrose (slope = 0.96, R2 = 0.991) were all predicted accurately.  相似文献   

16.
The physicochemical, morphological, thermal and crystal properties of the starches separated from four different Dioscorea opposita Thunb. cultivars (Taigu, Ribenbai, Wenxi and Zhongbowen) were studied. Amylose contents of D. opposita Thunb. starches from different cultivars ranged from 21.17% to 25.00%. The shape of starch granules separated from different D. opposita Thunb. cultivars varied from round or oval to elliptic or caky. The surface of the starch granules appeared to be smooth without any fissures. The average particle diameter of starches from different D. opposita Thunb. cultivars ranged from 25.90 to 28.06 μm. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) were determined using differential scanning calorimetry (DSC). To, Tp, Tc and ΔHgel of D. opposita Thunb. starches ranged from 73.1 to 73.9, 77.6 to 80.4, 82.1 to 85.9 °C and 6.548 to 12.13 J/g, respectively. The crystal type of starches separated from different D. opposita Thunb. cultivars was a typical C-type pattern. The relative degree of crystallinity of the four D. opposita Thunb. cultivars starches were about 38.79%, 39.88%, 41.67% and 49.03%, respectively.  相似文献   

17.
Physicochemical, functional, thermal and pasting properties of flours from field pea (LFP-48 and PG-3) and pigeon pea (AL-15 and AL-201) cultivars were determined and related to each other using Pearson correlation and principal component analysis (PCA). Field pea flours (FPF) were significantly (P < 0.05) different from pigeon pea flours (PPF) in their lower ash and higher fat and protein contents. FPF also exhibited higher L, ΔE value, water solubility index (WSI), oil absorption capacity (OAC), foaming capacity (FC) and lower a, b value, water absorption index (WAI) and water absorption capacity (WAC) in comparison to PPF. FPF differed significantly from PPF in exhibiting lower transition temperatures (ToTpTc), enthalpy of gelatinization (ΔHgel), peak height index (PHI) and higher gelatinization temperature range (R). PCA showed that LFP-48 and PG-3 flours were located at the far left of the score plot with a large negative score, while the AL-15 and AL-201 flours had large positive scores in the first principal component. Several significant correlations between functional, thermal and pasting properties were revealed, both by Pearson correlation and PCA. Pasting properties of the flours, measured using the rapid visco analyzer (RVA), also differed significantly. PPF were observed to have higher pasting temperature (PT), peak viscosity (PV), trough viscosity (TV), breakdown (BV), final viscosity (FV) and lower setback viscosity (SV) as compared to FPF.  相似文献   

18.
The starches isolated from normal and waxy corn varieties were hydrolyzed with hydrochloric acid (0.14 mol equivalent/L) and evaluated for physicochemical and functional properties. Acid thinning decreased the amylose content and swelling power but increased the solubility. The light transmittance of acid thinned (AT) starch pastes was higher than those of their native starches after similar storage intervals. The scanning electron microscopic observation demonstrated that the acid thinning did not cause any disruption of the granular crystalline structure. Native normal corn starches showed lower onset temperature (To) and peak temperature (Tp) as compared to their counterpart AT starches, whereas the reverse was observed for waxy corn starch. Enthalpy of gelatinization (ΔHgel) was lower in AT normal and waxy starches as compared to their native starches. The percentage of retrogradation (%R) was significantly higher for native corn starches as compared to their AT starches. A significant reduction in peak—(PV), trough—(TV), breakdown—(BV), final—(FV), and setback viscosity (SV) was observed by acid thinning, and the reduction was more pronounced in AT waxy starches. Among AT starches, AT waxy starch showed the lowest values of PV, TV, BV, FV and SV.  相似文献   

19.
The high-pressure sterilization establishment requires data on isobaric and isothermal destruction kinetics of baro-resistant pathogenic and spoilage bacterial spores. In this study, Clostridium sporogenes 11437 spores (107 CFU/ml) inoculated in milk were subjected to different pressure, temperature and time (P, T, t) combination treatments (700–900 MPa; 80–100 °C; 0–32 min). An insulated chamber was used to enclose the test samples during the treatment for maintaining isobaric and quasi-isothermal processing conditions. Decimal reduction times (D values) and pressure and temperature sensitivity parameters, ZT (pressure constant) and ZP (temperature constant) were evaluated using a 3 × 3 full factorial experimental design. HP treatments generally demonstrated a minor pressure pulse effect (PE) (no holding time) and the pressure hold time effect was well described by the first order model (R2 > 0.90). Higher pressures and higher temperatures resulted in a higher destruction rate and a higher microbial count reduction. At 900 MPa, the temperature corrected D values were 9.1, 3.8, 0.73 min at 80, 90, 100 °C, respectively. The thermal treatment at 0.1 MPa resulted in D values 833, 65.8, 26.3, 6.0 min at 80, 90, 95, 100 °C respectively. By comparison, HP processing resulted in a strong enhancement of spore destruction at all temperatures. Temperature corrected ZT values were 16.5, 16.9, 18.2 °C at 700, 800, 900 MPa, respectively, which were higher than the thermal z value 9.6 °C. Hence, the spores had lower temperature sensitivity at elevated pressures. Similarly, corrected ZP values were 714, 588, 1250 MPa at 80, 90, 100 °C, respectively, which illustrated lower pressure sensitivity at higher temperatures. By general comparison, it was concluded that within the range operating conditions employed, the spores were relatively more sensitive to temperature than to pressure.  相似文献   

20.
H. Hashiba 《LWT》2009,42(6):1153-1163
This study aims to obtain insight into mechanisms of NaCl diffusion in pork meats under cooking conditions: the loins at 5 (raw), 63 (pre-cooked) and 98 °C (pre-cooked), the mince at 98 °C (pre-cooked), and the filet at 98 °C (pre-cooked). It has been generally presumed that NaCl in any of pork meats diffuses with a constant Fick's diffusion coefficient, D, through liquid water channel imbibed in them. However in the present study, we experimentally obtained skewed bell shape variations of D in all of the above meats with respective maxima at certain low NaCl concentrations. These variations were interpreted in terms of a dual mode sorption and diffusion theory, which had been successfully applied to NaCl diffusion behaviors in Japanese radish and solidified egg white. This interpretation gives a thermodynamic diffusion coefficient, DT(p) for the partition species of NaCl and another one, DT(L) for the Langmuir type sorption species, both in the water swollen substrates in the meats. It was found that DT(p) values are sizably smaller than corresponding DT(L) values. This difference was ascribed to the lower water content in the p region than that in the L region. With the two DTs and additional equilibrium parameters, the theory explained the remarkable decrease of D value with C at 21 °C found by Guiheneuf et al. and nearly constant D values in the higher C range at 5 °C reported by other researchers. Experimentally obtained sorption isotherms of NaCl, which were slightly convex upward in the low C range, were satisfactorily reproduced with the parameters and the fractions of water swollen substrates in the whole meats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号