首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Skim and whole milk powders were manufactured at lab scale by spray freeze drying (SFD), using liquid nitrogen as the cryogen. The polydispersity of droplet/particle sizes was limited using an encapsulator nozzle to atomize the feed. Particle morphology was examined using a scanning electron microscope. Samples were compared with equivalent spray-dried powders in tests of wettability and dissolution in water. The spray freeze-dried powders were found to be highly porous, with a uniform structure of pores throughout the entire particles. When tested in water, SFD skim milk powders wetted roughly three times as fast as industrially spray-dried agglomerated skim milk powders and were observed to dissolve rapidly by breaking down into smaller particles.  相似文献   

2.
Reconstituted milk powders (skim milk, whole milk, and milk protein concentrate powders) were spray dried using research-scale (laboratory- and pilot-scale) spray dryers to investigate the influence of type on the dryer on the surface composition (protein, fat, lactose) and morphological characteristics (size and surface structure) of the powder particles. Milk powders produced by these research-scale dryers were compared to commercially produced and freeze-dried powders. The powders produced by the laboratory- and pilot-scale dryers were significantly different from the commercially dried powders in both surface composition and morphology. The milk powders produced by laboratory- and pilot-scale dryers provided reproducible results with similar surface morphologies between dryer types, despite varying surface compositions. The surface composition of the freeze-dried powder was also significantly different from than that of the spray-dried powders. The freeze-dried skim milk powder (SMP) was similar in surface protein to its bulk protein composition, indicating relative homogeneity of particle composition of the freeze-dried powder.  相似文献   

3.
Spray-dried powders are typically produced as amorphous particles. Long storage of the particles tends to crystallize the powders, a reaction affected by moisture, time, and temperature. This work has examined partial crystallization from amorphous spray-dried powders by moisture sorption. Powders of citrus fiber with hibiscus extract, maltodextrin, coffee, tea, skim milk, and sucrose were produced with a laboratory-scale spray dryer. The powders were exposed to ambient temperature and various relative humidities, with weight measurements recorded over time. It has been found that, in different materials, the amorphous to crystalline state change is observed at varying rates depending on the relative humidities and molecular weights. This observation may be associated with all amorphous spray-dried materials.  相似文献   

4.
Spray-dried powders are typically produced as amorphous particles. Long storage of the particles tends to crystallize the powders, a reaction affected by moisture, time, and temperature. This work has examined partial crystallization from amorphous spray-dried powders by moisture sorption. Powders of citrus fiber with hibiscus extract, maltodextrin, coffee, tea, skim milk, and sucrose were produced with a laboratory-scale spray dryer. The powders were exposed to ambient temperature and various relative humidities, with weight measurements recorded over time. It has been found that, in different materials, the amorphous to crystalline state change is observed at varying rates depending on the relative humidities and molecular weights. This observation may be associated with all amorphous spray-dried materials.  相似文献   

5.
The rationale of this study has been to use fluidized beds to crystallize amorphous spray-dried skim milk powders with multiple stages of processing at different temperatures and humidities with the aim of rapidly making mostly crystalline powders. This paper discusses the performance of a multiple-stage fluidized bed dryer, and a combination of crystallization of lactose in spray drying at high humidity (lactose nuclei formation) and subsequent fluidized bed drying. Two different combinations of spray dryer and multi-stage fluidized-bed dryer have been suggested to crystallize lactose in skim milk powder. The results show significant improvements in the crystallinity of the powders. Moisture sorption test and X-ray diffraction analysis were used to assess the crystallinity of the powders. The processed powders that were crystallized in a humid-loop spray drying combined with a two-stage fluidized-bed dryer/crystallizer showed 92% improvement in lower amorphicity by processing at different stages of 70°C, 50% RH and 80°C, 50% RH for 15 minutes. The conventionally spray-dried powders that were crystallized in a three-stage fluidized-bed dryer/crystallizer showed 87% improvement in lower amorphicity (less moisture sorption) by processing at different stages of 60°C, 50% RH; 70°C, 40% RH; and 80°C, 40% RH for 20 minutes. The multiple-stage fluidized bed system showed distinctive potential to crystallize lactose significantly in skim milk powder using an industrial-feasible process.  相似文献   

6.
Seven samples of spray-dried milk were prepared using a miniature-scale Buchi Mini Spray Dryer B-290 (diameter 0.5 m, height 1.1 m). For each run, all inlet conditions were held constant except for feed type, inlet solids concentration, and inlet temperature. Skim milk at a solids concentration of 8.8% and whole milk at a solids concentration of 11% were dried at two inlet temperatures, 120 and 200°C. Lactose-free skim milk (8.8% solids concentration) and skim milk at a solids concentration of 41.2% were also dried at an inlet temperature of 200°C to assess the effects of milk feed type and inlet concentration, respectively. Equilibrium between the outlet product moisture content and the outlet gas conditions in the miniature spray dryer was not reached, unlike previous results for pilot-scale and larger dryers, so it appears that, in small (miniature-scale) dryers, the outlet moisture content is limited by kinetics and not by equilibrium. Calculated yields ranged from 10.4 to 82.7%, with whole milk giving significantly lower yields than skim milk, due to the sticky nature of fat found in whole milk. Lactose-free skim milk produced lower yields than skim milk dried at the same conditions, indicating that the lower glass-transition temperatures of the converted lactose sugars make these powders stickier. This sugar effect was not as large as that of the fat content. Comparisons between the SEM images, fractal dimensions, particle size distributions, and bulk densities showed that lower inlet temperatures produced particles of a more collapsed nature with a higher bulk density and lower fractal dimension than milk particles dried at higher temperatures. Also, feed solids concentration heavily influenced the shape of the particles, with high concentrations producing more spherical, less broken or shriveled particles with higher fractal dimensions, as the shell walls are thicker under these conditions. The fractal dimensions appeared to give generally consistent results for quantifying the average particle shapes.  相似文献   

7.
Seven samples of spray-dried milk were prepared using a miniature-scale Buchi Mini Spray Dryer B-290 (diameter 0.5 m, height 1.1 m). For each run, all inlet conditions were held constant except for feed type, inlet solids concentration, and inlet temperature. Skim milk at a solids concentration of 8.8% and whole milk at a solids concentration of 11% were dried at two inlet temperatures, 120 and 200°C. Lactose-free skim milk (8.8% solids concentration) and skim milk at a solids concentration of 41.2% were also dried at an inlet temperature of 200°C to assess the effects of milk feed type and inlet concentration, respectively. Equilibrium between the outlet product moisture content and the outlet gas conditions in the miniature spray dryer was not reached, unlike previous results for pilot-scale and larger dryers, so it appears that, in small (miniature-scale) dryers, the outlet moisture content is limited by kinetics and not by equilibrium. Calculated yields ranged from 10.4 to 82.7%, with whole milk giving significantly lower yields than skim milk, due to the sticky nature of fat found in whole milk. Lactose-free skim milk produced lower yields than skim milk dried at the same conditions, indicating that the lower glass-transition temperatures of the converted lactose sugars make these powders stickier. This sugar effect was not as large as that of the fat content. Comparisons between the SEM images, fractal dimensions, particle size distributions, and bulk densities showed that lower inlet temperatures produced particles of a more collapsed nature with a higher bulk density and lower fractal dimension than milk particles dried at higher temperatures. Also, feed solids concentration heavily influenced the shape of the particles, with high concentrations producing more spherical, less broken or shriveled particles with higher fractal dimensions, as the shell walls are thicker under these conditions. The fractal dimensions appeared to give generally consistent results for quantifying the average particle shapes.  相似文献   

8.
《Drying Technology》2013,31(5):1043-1056
ABSTRACT

A mini spray dryer has been used to investigate morphological changes that occur to milk particles during the spray drying process. We have found that the mini spray dryer is ideal for such investigations, because phenomena such as skin and vacuole formation in particles can be analyzed without the added complication of particle agglomeration, which only occurs in much larger spray dryers where particle number concentrations are higher. We have confirmed observations made by various researchers that the bulk density of spray-dried milk powder is greatly affected by the drying temperature, due to the strong influence of the latter on the porosity of the particles. In addition, we have attempted to explain observations made by various workers that fat accumulates preferentially at the surface of a particle during drying by postulating that fluid fat is transported towards the surface, via a network of cracks and pores, by the development of a vacuole overpressure which is also responsible for the inflation of the particle. Finally, we have shown that milk powders can be spray dried a second time, by reconstitution with water, with no change to the thermodynamic characteristics of the resultant powder. Thus, milk concentrates for spray drying research can be prepared from already-spray-dried milk powders rather than using the more arduous evaporation method to concentrate unprocessed milk.  相似文献   

9.
A mini spray dryer has been used to investigate morphological changes that occur to milk particles during the spray drying process. We have found that the mini spray dryer is ideal for such investigations, because phenomena such as skin and vacuole formation in particles can be analyzed without the added complication of particle agglomeration, which only occurs in much larger spray dryers where particle number concentrations are higher. We have confirmed observations made by various researchers that the bulk density of spray-dried milk powder is greatly affected by the drying temperature, due to the strong influence of the latter on the porosity of the particles. In addition, we have attempted to explain observations made by various workers that fat accumulates preferentially at the surface of a particle during drying by postulating that fluid fat is transported towards the surface, via a network of cracks and pores, by the development of a vacuole overpressure which is also responsible for the inflation of the particle. Finally, we have shown that milk powders can be spray dried a second time, by reconstitution with water, with no change to the thermodynamic characteristics of the resultant powder. Thus, milk concentrates for spray drying research can be prepared from already-spray-dried milk powders rather than using the more arduous evaporation method to concentrate unprocessed milk.  相似文献   

10.
Mono-disperse droplet generation and subsequent drying in a spray-drying chamber, i.e., mono-disperse droplet spray dryer (MDDSD), provides a better-defined “flight experience” for liquid droplets. The related particle formation can be investigated more easily than that in the usual poly-disperse droplet spray dryer (PDDSD). Previously, skim milk, which is of high protein and high lactose content and is one of the two main dairy fluids that are processed into powder form for consumer markets, was subjected to this kind of investigation in Australia. Here, whole milk, which is the other main dairy fluid, has been spray-dried in a MDDSD set-up at Xiamen University (China). Because the initial droplet size is uniform, measurable, and the particle morphology after drying is consistent, it was possible to investigate the initial solids content effect upon shrinkage and inlet air temperature effect upon shrinkage. In contrast to what had been found for skim milk particles, the formation of the fat-containing (whole milk) particles does not follow the perfect shrinkage model as the skim milk does. This work has improved our quantitative understanding of the whole milk drying process. A fundamental analysis invoked with a modified one-dimensional modeling of spray drying has been given that has shown some further insight about the process.  相似文献   

11.
The possibility of using milk permeate (MP) to lower the protein level of skim milk powder (SMP) in producing powders of 34% and lower protein is explored. Skim milk suspensions with various levels of MP were prepared by mixing SMP and MP powder (MPP) at the ratios of 1:0, 7:3, 3:7, and 0:1: from 34 to 5.3% protein. The suspensions were dried in a spray dryer with inlet and outlet temperatures of 180 and 80°C, respectively. Increasing permeate concentration in the mixture showed a greater tendency to stickiness manifested by lowered the cyclone recovery of the powder as more powder stuck on the wall of the dryer. Increasing permeate concentration in the resultant powder did not significantly affect the bulk density but led to a reduction in the particle size and also made the powder slight green and yellowish in color. It also found to lower the glass transition temperature (Tg) of the skim milk powder (SMP) and induce crystallization of lactose at lower water activity (aw ≥ 0.328 for SMP:MPP of 3:7 and 0:1 compared to aw ≥ 0.0.432 for SMP:MPP of 1:0 and 3:7). Addition of MP in SMP lowered the Tg values of the resulting powders. The permeate fraction in spray-dried SMP/MPP mixtures found to lower the critical aw and moisture content, suggesting the SMP mixed with MPP is more likely to become sticky than SMP alone (at 34% protein) when stored at a similar water activity and moisture content.  相似文献   

12.
Surface composition of powders is expected to play important role during its end use. Understanding the mechanism of the powder surface formation in terms of the compositional aspect and the ability to control the surface composition will be highly useful in milk powder quality improvement and new product development. In this work, the distribution of milk components in the near surface region of the industrial spray-dried milk powders (skim milk powder and whole milk powder) was studied using electron spectroscopy for chemical analysis (ESCA) combined with the free fat extraction procedures. The results showed that the surface composition is very much different from the bulk composition of powders indicating a kind of solid/solute segregation that must occur during spray-drying, in particular in the period of before a solid crust is formed. This observation has also been supported by theoretical consideration with estimated diffusivity ratios of milk components in liquid.  相似文献   

13.
Combined crystallization and drying of lactose solutions was performed in a pilot-scale spray dryer over a wide range of operating conditions. The effect of different parameters, including temperature, moisture content, atomizing air flow rate, liquid feed rate, main drying air flow rate, and particle size, on the degree of crystallinity of the spray-dried powders was analyzed. Water-induced crystallization (WIC) and modulated differential scanning calorimetry (MDSC) were used to assess the effect of these parameters on the degree of crystallinity of the spray-dried powders. The particles were characterized in terms of the final moisture content using WIC and distinctive differences in the peak heights, which are indicative of the particle crystallinity, were found for spray-dried particles using different drying conditions, supporting the results from MDSC. MDSC showed that decreasing the inlet air temperature by 40°C increased the degree of crystallinity in the particles threefold from 22 to 72%. A decrease in the inlet air temperature may decrease the particle temperature, resulting in wetter particles, and a lower temperature meant a longer particle drying time and allowed the particles to rearrange themselves into a more crystalline form. Up to 72% crystallinity is achievable in a pilot-scale spray dryer by suitable adjustment of the operating conditions. The results suggest differences in the rate of crystallization and particle size between small and pilot-scale spray dryers.  相似文献   

14.
The possibility of using milk permeate (MP) to lower the protein level of skim milk powder (SMP) in producing powders of 34% and lower protein is explored. Skim milk suspensions with various levels of MP were prepared by mixing SMP and MP powder (MPP) at the ratios of 1:0, 7:3, 3:7, and 0:1: from 34 to 5.3% protein. The suspensions were dried in a spray dryer with inlet and outlet temperatures of 180 and 80°C, respectively. Increasing permeate concentration in the mixture showed a greater tendency to stickiness manifested by lowered the cyclone recovery of the powder as more powder stuck on the wall of the dryer. Increasing permeate concentration in the resultant powder did not significantly affect the bulk density but led to a reduction in the particle size and also made the powder slight green and yellowish in color. It also found to lower the glass transition temperature (Tg ) of the skim milk powder (SMP) and induce crystallization of lactose at lower water activity (aw  ≥ 0.328 for SMP:MPP of 3:7 and 0:1 compared to aw  ≥ 0.0.432 for SMP:MPP of 1:0 and 3:7). Addition of MP in SMP lowered the Tg values of the resulting powders. The permeate fraction in spray-dried SMP/MPP mixtures found to lower the critical aw and moisture content, suggesting the SMP mixed with MPP is more likely to become sticky than SMP alone (at 34% protein) when stored at a similar water activity and moisture content.  相似文献   

15.
水基SiC浆料的喷雾造粒特性   总被引:1,自引:0,他引:1  
以水为液体介质,制备分散稳定的水基SiC料浆,并利用喷雾造粒技术对水基SiC浆料进行造粒,研究了碳化硅浆料固含量及喷雾干燥工艺对造粒粉特性的影响。研究结果表明:浆料固相含量对造粒粉体粒径分布影响明显,粉体粒径随固含量的增加而增大。在最佳的干燥工艺条件下,碳化硅粉体流动性得到较大改善,素坯密度增加,陶瓷力学性能提高。  相似文献   

16.
This work deals with the dispersion and stabilisation of nanosized TiO2 particles in an aqueous medium as a first step in the preparation of spray-dried nanostructured powders.A colloidal route leading to the production of titania nanostructured feedstocks to obtain nanostructured powders was developed. The process was based on the production of homogeneous and concentrated TiO2 nanosuspensions dispersed in deionised water with a suitable control of pH and the use of an appropriate anionic dispersant. Concentrated suspensions could be obtained by mixing with an ultrasounds probe at different times depending on the dispersing conditions.Homogeneous suspensions prepared were then reconstituted by spray drying into free-flowing powders with an adequate granule size distribution for diverse purposes, such as atmospheric plasma spraying coatings.  相似文献   

17.
The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h-1, 1.6 kg h-1, 1.8 kg h-1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s-1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

18.
Because of the numerous application as food ingredient skim milk powder is of prime economically importance among milk powders in Germany. However, the ease of powder handling, which is determined by the flow properties, is often not regarded as a real quality attribute. To better understand the powder handling characteristic of skim milk powders this work deals with flowability measurement of commercial skim milk powders by using shear cell testing technique. Furthermore relationships between particle size, particle shape and flowability data are highlighted.  相似文献   

19.
In this work, Al2O3–13 wt% TiO2 submicron-nanostructured powders were deposited using atmospheric plasma spraying. The feedstocks were obtained by spray drying two starting suspensions of different solids content, prepared by adding nanosized TiO2 and submicron-sized Al2O3 powders to water. The spray-dried granules were heat-treated to reduce their porosity and the powders were fully characterised in both untreated and thermally treated state. Comparison with two commercial feedstocks was carried out. Characterisation allowed a temperature for the thermal treatment to be chosen on the basis of the sprayability of the feedstock and the preservation as much as possible of the submicron-sized structure of the unfired agglomerates.Optimisation of the deposition conditions enabled the reconstituted powders to be successfully deposited, yielding coatings that were well bonded to the substrate. The coating microstructure, characterised by SEM, was mostly formed by a matrix of fully molten particles where the presence of semi-molten feedstock agglomerates was also observed.Moreover, microhardness, toughness, adhesion and tribological behaviours were determined, and the impact of the granule characteristics on these properties was studied. It was found that changing the feedstock characteristics allows controlling the coating quality and properties. In general, good mechanical properties were obtained using a feedstock comprising a binary mixture of submicrometric Al2O3 and nanometric TiO2 particles in the spray-dried powder.  相似文献   

20.
《Drying Technology》2013,31(5):895-917
Abstract

The concept of the product moisture locus was tested in this work using a pilot-scale modified Niro spray dryer (diameter 0.8 m, height 2 m), where the residence time of the particles inside this spray dryer is lower compared with larger industrial spray dryers. The moisture contents of skim milk powder produced from spray drying skim milk (solids content 8.8% w/v) at different operating conditions, namely different swirl vane angles (0°, 25°, 30°), inlet air temperatures (170°C, 200°C, 230°C) and process fluid flowrates (1.4 kg h?1, 1.6 kg h?1, 1.8 kg h?1), were compared with the predicted equilibrium moisture contents. In addition, the residence time of the particles was also increased in the spray dryer by decreasing the inlet air mass flowrate from 0.016 to 0.013 kg s?1. The outlet moisture contents of the skim milk powder for all the 23 runs carried out in this work were within 0.4% of the equilibrium values. Thus, the skim milk powder particles were in close equilibrium with the gas inside the drying chamber. These equilibrium limitations are confirmed by other literature data (Boonyai, P. Comparative Evaluation of Soymilk Drying in a Spray Dryer and Spouted Bed of Inert Particles. M.Sc. Thesis. Asian Institute of Technology: Bangkok, Thailand, 2000; 90 pp; Harvie, D.J.E.; Langrish, T.A.G.; Fletcher, D.F. A computational fluid dynamics study of a tall-form spray dryer. Trans IChemE 2002, in press). The use of this finding to predict spray dryer performance is demonstrated by mass and energy balance calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号