首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the analysis and control of a photovoltaic (PV) system connected to the main supply through a Boost converter and shunt active filter supplied by a PV system providing continuous supply of nonlinear load in variation. A robust control of a PV system connected to the grid while feeding a variable nonlinear load is developed and highlighted. This development is based on the control of the Boost converter to extract the maximum power from the PV system using the Perturb and Observe (P and O) algorithm in the presence of temperature and illumination. The proposed modeling and control strategy provide power to the variable nonlinear load and facilitates the transfer of power from solar panel to the grid while improving the quality of energy (harmonic currents compensation, power factor compensation and dc bus voltage regulation). Validation of the developed model and control strategy is conducted using power system simulator Sim-Power System Blockset Matlab/Simulink. To demonstrate the effectiveness of the shunt active filter to load changes, the method of instantaneous power (pq theory) is used to identify harmonic currents. The obtained results show an accurate extraction of harmonic currents and perfect compensation of both reactive power and harmonic currents with a lower THD and in accordance with the IEEE-519 standard.  相似文献   

2.
This paper presents a single stage transformer-less grid-connected solar photovoltaic (PV) system with an active and reactive power control. In the absence of active input power, the grid-tied voltage source converter (VSC) is operated in a reactive power generation mode, which powers the control circuitry, and maintains a regulated DC voltage to the VSC. A data-based maximum power point tracking (MPPT) control scheme which performs power quality control at a maximum power by reducing the total harmonic distortion (THD) in grid injected current as per IEEE-519/1547 standards is implemented. A proportional-integral (PI) controller based dynamic voltage restorer (DVR) control scheme is implemented which controls the grid side converter during single-phase to ground fault. The analysis includes the grid current THD along with the corresponding variation of the active and reactive power during the fault condition. The MPPT tracks the actual variable DC link voltage while deriving the maximum power from the solar PV array, and maintains the DC link voltage constant by changing the modulation index of the VSC. Simulation results using Matlab/Simulink are presented to demonstrate the feasibility and validations of the proposed novel MPPT and DVR control systems under different environmental conditions.  相似文献   

3.
Grid‐connected photo voltaic (PV) systems are being developed very fast and systems from a few kW to tenths of a MW are now in operation. As an important source of distributed generation (DS) the PV systems need to comply with a series of standard requirements in order to ensure the safety and the seamless transfer of the electrical energy to the grid. Multilevel voltage source converters (VSC) is a heart of the PV system and are emerging as an important power converter options for low, medium, and high‐power applications. These VSCs have bought numerous advantages, especially in renewable energy systems such as PV and wind energy systems. In this article, several topologies of VSCs, which brings together some concepts from traditional converters and multi‐level converters, are presented. Also, several control strategies for controlling current, voltage, active power and reactive power have also been reviewed. Various topologies with their technical aspects have been reviewed and the best suitable topology and control scheme for grid connected PV and wind energy systems has been suggested. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, sliding mode control (SMC) – direct power controller (DPC) based active and reactive power controller for three-phase grid-tied photovoltaic (PV) system is proposed. The proposed system consists of two main controllers: the DC/DC boost converter to track the possible maximum power from the PV panels and the grid-tied three-phase inverter. The Perturb and Observe (P&O) algorithm is used to transfer the maximum power from the PV panels. Control of the active and reactive powers is performed using the SMC-DPC strategy without any rotating coordinate transformations or phase angle tracking of the grid voltage. In addition, extra current control cycles are not used to simplify the system design and to increase transient performance. The fixed switching frequency is obtained by using space vector modulation (SVM). The proposed system provides very good results both in transient and steady states with the simple algorithms of P&O and SMC-DPC methods. Moreover, the results are evaluated by comparing the SMC-DPC method developed for MPPT and the traditional PI control method. The proposed controller method is achieved with TMS320F28335 DSP processor and the system is experimentally tested for 12 kW PV generation systems.  相似文献   

5.
This paper proposes a novel direct torque and reactive power control (DTC) for grid-connected doubly fed induction generators (DFIGs) in the wind power generation applications. The proposed DTC strategy employs a variable structure control (VSC) scheme to calculate the required rotor control voltage directly and to eliminate the instantaneous errors of active and reactive powers without involving any synchronous coordinate transformations, which essentially enhances the transient performance. Constant switching frequency is achieved as well by using space vector modulation (SVM), which eases the designs of power converter and ac harmonic filters. Simulated results on a 2 MW grid-connected DFIG system are presented and compared with those of the classic voltage-oriented vector control (VC) and traditional look-up-table (LUT) direct power control (DPC). The proposed VSC DTC maintains enhanced transient performance similar to the LUT DPC and keeps the steady-state harmonic spectra at the identical level as the VC strategy when the network is strictly balanced. Besides, the VSC DTC strategy is capable of fully eliminating the double-frequency pulsations in both the electromagnetic torque and the stator reactive power during network voltage unbalance.  相似文献   

6.
A hybrid and adaptive control approach for solar photovoltaic system and fuel cell fed voltage source converter (VSC) is presented in this work. Further maximum power from solar photovoltaic array is extracted by using incremental conductance (INC) based maximum power point tracking approach. This hybrid approach combines I cos ? technique and gradient descent back propagation learning (GDBP) neural network (NN) to extract fundamental components from load current for efficient harmonics compensation and provides power quality improvement and support the three-phase AC grid by supplying power to the grid and as well as connected loads. The proposed system includes photovoltaic (PV) array, a voltage source converter (VSC), ripple filter and combination of linear and non-linear loads. The proposed control approach provides a fast response during dynamic conditions as well. Results of the proposed control technique also compared with the other available control techniques for its superiority analysis. The developed control technique is demonstrated by using MATLAB/SIMULINK platform.  相似文献   

7.
The integration of significant amounts of renewable-storage hybrid power generation systems to the electric grid poses a unique set of challenges to utilities and system operators. This article deals with the designing methodology of an intelligent control based grid-connected a hybrid system composed of renewable energy source (RES) and storage system (SS). RES is a photovoltaic (PV) source and SS is a process of hydrogen transformation system (H2TS) which composed of alkaline water electrolysis (AWE) for decomposition water by using the PV power, a tank used for gas storage and a proton exchange membrane (PEM) fuel cell (FC) to transform the H2 to the electrical energy. The interconnection of the grid with the power generation system (PGS) is ensured through using a DC/AC hysteresis converter and it can synchronize current with the grid voltage among an independent control of active (P) and reactive (Q) power through a possibility of the Q compensation. In the proposed system, three algorithms are applied; two used inside generation and the third is used inside the grid. Perturb and observe (P&O) maximum power point tracking (MPPT) control algorithm always finds optimal power in the PV generator. A simple cascade controls loop of DC-DC boost converter and operate the FC generator to ensure maximum power and to regulate the DC Bus voltage. In addition, adaptive fuzzy logic control (FLC) unit is developed to control the DC/AC inverter, with adopting an off-line optimization based on genetic algorithms (GAs) applauded for tune different issues as scaling factors of the FLC and PIDs gains of the PV and the H2TS control loops. Simulated results prove a big success of the proposed controls of the grid connected the hybrid PV-H2TS with good performance.  相似文献   

8.
探讨了一种具有有源滤波器功能的光伏并网发电系统。该系统白天可有效地进行光伏并网发电,还可补偿或抑制本地非线性负载产生的无功和谐波,夜晚系统仍可作为APF继续工作。相对于单独的光伏并网系统,它不但提高了设备利用率,也改善了电网的供电质量。文章分析了系统的结构组成,还采用了具有较好鲁棒性和动态响应速度的、基于瞬时无功理论的闭环无功和谐波电流检测的方法,分析了并网电流的合成及其跟踪控制。最后,利用Matlab/Simulink对系统进行了仿真,验证了系统的可行性。  相似文献   

9.
Single-stage grid-connected photovoltaic (PV) systems have advantages such as simple topology, high efficiency, etc. However, since all the control objectives such as the maximum power point tracking (MPPT), synchronization with the utility voltage, and harmonics reduction for output current need to be considered simultaneously, the complexity of the control scheme is much increased. This paper presents the implementation of a single-stage three-phase grid-connected PV system. In addition to realize the aforementioned control objectives, the proposed control can also remarkably improve the stability of the MPPT method with a modified incremental conductance MPPT method. The reactive power compensation for local load is also realized, so as to alleviate grid burden. A DSP is employed to implement the proposed MPPT controller and reactive power compensation unit. Simulation and experimental results show the high stability and high efficiency of this single-stage three-phase grid-connected PV system.  相似文献   

10.
提出一种将有源滤波和无功功率补偿与光伏并网发电相结合的新型光伏并网功率调节系统。利用瞬态无功功率理论中的瞬时无功和谐波电流检测原理,采用电流矢量控制技术,以DSP数字信号处理器为基础,在30KVA光伏并网功率调节器样机中成功地实现了有源滤波、无功功率补偿和光伏并网发电三者的统一控制,使光伏并网功率调节器在向电网提供有功能量的同时也提供无功负载所需的无功能量,从而节省了设备投资,同时也改善了电网的供电质量。  相似文献   

11.
基于电压源换流器的高压直流输电(VSC-HVDC)是远距离风电并网的理想方案,同时可用于联接弱受端系统,但双馈风机经VSC-HVDC能够馈入多弱的受端系统仍待深入研究,有必要提出基于短路比的指标来衡量所能接入的受端系统。对此,基于定功率控制下VSC的稳定运行约束,分析系统稳态的临界运行点,总结出临界短路比的求解步骤。在此基础上,结合双馈风机的控制方程,详细讨论了风电场出力、弱交流系统等效阻抗和临界短路比的关系。仿真分析发现,受双馈风机无功特性的影响,接入受端系统的临界短路比未能达到理论值,引入基于无功补偿的有效短路比作为受端系统的强弱判断指标,使得所提临界短路比求解方法在此工况下依然成立。  相似文献   

12.
In the case of photovoltaic (PV) systems acting as distributed generation (DG) systems, the DC energy that is produced is fed to the grid through the power-conditioning unit (inverter). The majority of contemporary inverters used in DG systems are current source inverters (CSI) operating at unity power factor. If, however, we assume that voltage source inverters (VSI) can replace CSIs, we can generate reactive power proportionally to the remaining unused capacity at any given time. According to the theory of instantaneous power, the inverter reactive power can be regulated by changing the amplitude of its output voltage. In addition, the inverter active power can be adjusted by modifying the phase angle of its output voltage. Based on such theory, both the active power supply and the reactive power compensation (RPC) can be carried out simultaneously. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of a PV system can still be used to improve the inverter utilisation factor. Some MATLAB simulation results are included here to show the feasibility of the method.  相似文献   

13.
In this paper a grid connected photovoltaic (PV) system is presented. The grid integration of the PV system is carried out via a three phase three level neutral point clamped (NPC) inverter. To control the inverter a modified version of voltage oriented control (VOC) method and the space vector pulse width modulation (SVPWM) technique have been applied. With the proposed modification the PV system operates as a shunt active power filter (SAPF), a reactive power compensator, and a load’s current balancer simultaneously. In this way the PV system operates more efficiently compared to the conventional PV systems and offers ancillary services to electric power system. The effectiveness of the proposed control scheme is established through simulation results with Matlab/Simulink in steady state and transient response of the electric power distribution system.  相似文献   

14.
Decreasing costs and favorable policies have resulted in increased penetration of solar photovoltaic (PV) power generation in distribution networks. As the PV systems penetration is likely to increase in the future, utilizing the reactive power capability of PV inverters to mitigate voltage deviations is being promoted. In recent years, droop control of inverter- based distributed energy resources has emerged as an essential tool for use in this study. The participation of PV systems in voltage regulation and its coordination with existing controllers, such as on-load tap changers, is paramount for controlling the voltage within specified limits. In this work, control strategies are presented that can be coordinated with the existing controls in a distributed manner. The effectiveness of the proposed method was demonstrated through simulation results on a distribution system.  相似文献   

15.
This paper presents experimental evaluations for variation in the efficiency of energy extracted from a photovoltaic (PV) module (under non-linear loading) incorporated with an incremental conductance(IC) maximum power point tracking (MPPT) algorithm. The focus is on the evaluation of the PV panel under non-linear loading conditions using the experimental installation of a 100Wp photovoltaic array connected to a DC–DC converter and a KVA inverter feeding a non-linear load. Under the conditions of non-linear loading, both the simulation and experiment show that the MPPT technique fails to attain maximum power point due to the presence of ripples in the current leading eventually to a reduction in efficiency. In this paper, panel current is taken as a function of load impedance in the MPPT algorithm to eradicate power variation, as load impedance varies with supply voltage under non-linear conditions. The system is simulated for different non-linear loads using MATLAB-Simulink. A TMDSSOLAREXPKIT was used for MPPT control. In case 2, the inverter is connected to a single phase grid. When a voltage swell occurs in the grid, PV power drops. This power loss is reduced using the proposed MPPT method. The results of simulations and experimental measurements and cost efficiency calculations are presented.  相似文献   

16.
This paper presents a transformer-less single-stage grid-connected solar photovoltaic (PV) system with active reactive power control. In the absence of active input power, grid-tied voltage source converter (VSC) is operated in the reactive power generation mode, which powers control circuitry and maintains regulated DC voltage. Control scheme has been implemented so that the grid-connected converter continuously serves local load. A data-based maximum power point tracking (MPPT) has been implemented at maximum power which performs power quality control by reducing total harmonic distortion (THD) in grid-injected current under varying environmental conditions. Standards (IEEE-519/1547) stipulates that current with THD greater than 5% cannot be injected into the grid by any distributed generation (DG) source. MPPT tracks actual variable DC link voltage while deriving maximum power from PV array and maintains DC link voltage constant by changing the converter modulation index. Simulation results with the PV model and MPPT technique validations demonstrate effectiveness of the proposed system.  相似文献   

17.
Renewable energy sources have been taken the place of the traditional energy sources and especially rapidly developments of photovoltaic (PV) technology and fuel cell (FC) technology have been put forward these renewable energy sources (RES) in all other RES. PV systems have been started to be used widely in domestic applications connected to electrical grid and grid connected PV power generating systems have become widespread all around the world. On the other hand, fuel cell power generating systems have been used to support the PV generating so hybrid generation systems consist of PV and fuel cell technology are investigated for power generating. In this study, a grid connected fuel cell and PV hybrid power generating system was developed with Matlab Simulink. 160 Wp solar module was developed based on solar module temperature and solar irradiation by using real data sheet of a commercial PV module and then by using these modules 800 Wp PV generator was obtained. Output current and voltage of PV system was used for input of DC/DC boost converter and its output was used for the input of the inverter. PV system was connected to the grid and designed 5 kW solid oxide fuel cell (SOFC) system was used for supporting the DC bus of the hybrid power generating system. All results obtained from the simulated hybrid power system were explained in the paper. Proposed model was designed as modular so designing and simulating grid connected SOFC and PV systems can be developed easily thanks to flexible design.  相似文献   

18.
According to the theory of instantaneous reactive power, the active and reactive currents of inverter can be regulated by changing the amplitude and the phase of the output voltage of the inverter. Based on this theory, the active power output and the reactive power compensation (RPC) of the system are realized simultaneously at daylight. When the insolation is weak or the PV modules are inoperative at night, the RPC feature of PV system can still be used to improve the utilization factor of the system. The MATLAB simulation results validate the feasibility of the method.  相似文献   

19.
Photovoltaic (PV) systems and fuel cells (FCs) represent interesting solutions as being alternative power sources with high performance and low emission. This work presents a modeling and control study of two power generators; photovoltaic array and fuel cell based systems. An MPPT approach to optimize the PV system performances is proposed. The PV system consists of a PV array connected to a DC-DC buck converter and a resistive load. A maximum power point tracker controller is required to extract the maximum generated power. Based on Incremental Conductance (INC) principle, the idea of the proposed control is to use a Fuzzy Logic Controller (FLC) that allows the choice of the duty cycle step size which is used to be fixed in conventional MPPT algorithms. The variable step is computed according to the value of the PV power-voltage characteristic slope. The second working system comprises a controlled DC-DC converter fed by a proton exchange membrane fuel cell (PEMFC) and supplies a DC bus. The mathematical model of the PEMFC system is given. The converter duty cycle is adjusted in order to regulate the DC bus voltage. Obtained simulation results validate the control algorithms for both of studied power systems.  相似文献   

20.
The efforts to reduce the impact of the electric power generation from fossil fuels have been conducted to increase renewable energy sources and the trend to implement a decentralised scheme by distributed generation systems. However, small power plants' use does not contribute to the frequency regulation in the electrical power system due to the lack of the inertia and damping properties of synchronous generators used conventionally. This condition can produce unpredictable and unstable operational conditions of multi-area power systems. Hence, this paper aims to assess a voltage source converter (VSC) controlled by a synchronverter to help in frequency regulation in power networks that contain an actual number of renewable sources connected. The contribution lies in using the synchronverter as a control element capable of interacting correctly in a power network with a distributed generation system integrated with synchronous generators and renewable energy sources. Under this scenario, a hardware-in-the-loop (HIL) strategy of a photovoltaic-fuel cell-battery power generation system demonstrates that the VSC controlled by a synchronverter can react adequately under frequency deviations. A three power plants' performance, a conventional one and two photovoltaic (P.V.) farms handled by a synchronverter tied through a transmission link, is studied to demonstrate that the frequency viewpoint's behaviour and control purposes are satisfied. The results show the viability of the synchronverter as a frequency control strategy in electrical networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号