首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions.  相似文献   

2.
The goal of this study was to identify potential quantitative trait loci (QTL) for 27 production, fitness, and conformation traits of Guernsey cattle through genome-wide association (GWA) analyses, with extra emphasis on BTA19, where major QTL were observed for several traits. Animals' de-regressed predicted transmitting abilities (PTA) from the December 2018 traditional US evaluation were used as phenotypes. All of the Guernsey cattle included in the QTL analyses were predictor animals in the reference population, ranging from 1,077 to 1,685 animals for different traits. Single-trait GWA analyses were carried out by a mixed-model approach for all 27 traits using imputed high-density genotypes. A major QTL was detected on BTA19, influencing several milk production traits, conformation traits, and livability of Guernsey cattle, and the most significant SNP lie in the region of 26.2 to 28.3 Mb. The myosin heavy chain 10 (MYH10) gene residing within this region was found to be highly associated with milk production and body conformation traits of dairy cattle. After the initial GWA analyses, which suggested that many significant SNP are in linkage with one another, conditional analyses were used for fine mapping. The top significant SNP on BTA19 were fixed as covariables in the model, one at a time, until no more significant SNP were detected on BTA19. After this fine-mapping approach was applied, only 1 significant SNP was detected on BTA19 for most traits, but multiple, independent significant SNP were found for protein yield, dairy form, and stature. In addition, the haplotype that hosts the major QTL on BTA19 was traced to a US Guernsey born in 1954. The haplotype is common in the breed, indicating a long-term influence of this QTL on the US Guernsey population.  相似文献   

3.
《Journal of dairy science》2023,106(3):1925-1941
Although the quantitative trait locus (QTL) on chromosome 18 (BTA18) associated with paternal calving ease and stillbirth in Holstein Friesian cattle and its cross has been known for over 20 years, to our knowledge, the exact causal genetic sequence has yet escaped identification. The aim of this study was to re-examine the region of the published QTL on BTA18 and to investigate the possible reasons behind this elusiveness. For this purpose, we carried out a combined linkage disequilibrium and linkage analysis using genotyping data of 2,697 German Holstein Friesian (HF) animals and subsequent whole-genome sequencing (WGS) data analyses and genome assembly of HF samples. We confirmed the known QTL in the 95% confidence interval of 1.089 Mbp between 58.34 and 59.43 Mbp on BTA18. Additionally, these 4 SNPs in the near-perfect linkage disequilibrium with the QTL haplotype were identified: rs381577268 (on 57,816,137 bp, C/T), rs381878735 (on 59,574,329 bp, A/T), rs464221818 (on 59,329,176 bp, C/T), and rs472502785 (on 59,345,689 bp, T/C). Search for the causal mutation using short and long-read sequences, and methylation data of the BTA18 QTL region did not reveal any candidates though. The assembly showed problems in the region, as well as an abundance of segmental duplications within and around the region. Taking the QTL of BTA18 in Holstein cattle as an example, the data presented in this study comprehensively characterize the genomic features that could also be relevant for other such elusive QTL in various other cattle breeds and livestock species as well.  相似文献   

4.
A genomic region associated with milk fatty acid (FA) composition has been detected on Bos taurus autosome (BTA)17 based on 50,000 (50K) single nucleotide polymorphism (SNP) genotypes. The aim of our study was to fine-map BTA17 with imputed 777,000 (777K) SNP genotypes to identify candidate genes associated with milk FA composition. Phenotypes consisted of gas chromatography measurements of 14 FA based on winter and summer milk samples. Phenotypes and genotypes were available on 1,640 animals in winter milk, and on 1,581 animals in summer milk samples. Single-SNP analyses showed that several SNP in a region located between 29.0 and 34.0 Mbp were in strong association with C6:0, C8:0, and C10:0. This region was further characterized based on haplotypes. In summer milk samples, for example, these haplotypes explained almost 10% of the genetic variance in C6:0, 9% in C8:0, 3.5% in C10:0, 1.8% in C12:0, and 0.9% in C14:0. Two groups of haplotypes with distinct predicted effects could be defined, suggesting the presence of one causal variant. Predicted haplotype effects tended to increase from C6:0 to C14:0; however, the proportion of genetic variance explained by the haplotypes tended to decrease from C6:0 to C14:0. This is an indication that the quantitative trait locus (QTL) region is involved either in the elongation process or in early termination of de novo synthesized FA. Although many genes are present in this QTL region, most of these genes on BTA17 have not been characterized yet. The strongest association was found close to the progesterone receptor membrane component 2 (PGRMC2) gene, which has not yet been associated with milk FA composition. Therefore, no clear candidate gene associated with milk FA composition could be identified for this QTL.  相似文献   

5.
The aim of this study was to fine-map a genomic region associated with milk fatty acids (FA) on Bos taurus autosome (BTA) 17. This genomic region has been discovered with 50,000 (50k) single nucleotide polymorphisms (SNP) imputed to 777,000 (777k) SNP. In this study, high-density genotypes were imputed to whole-genome sequences level to identify candidate gene(s) associated with milk FA composition on BTA17. Phenotypes and genotypes were available for 1,640 cows sampled in winter, and for 1,581 cows sampled in summer. Phenotypes consisted of gas chromatography measurements in winter and in summer milk samples of 6 individual FA and the indicator of de novo synthesis, C6:0–C14:0. Genotypes consisted of imputed 777k SNP, and 89 sequenced ancestors of the population of genotyped cows. In addition, 450 whole-genome sequences from the 1,000 Bull Genome Consortium were available. Using 495 Holstein-Friesian sequences as a reference population, the 777k SNP genotypes of the cows were imputed to sequence level. We then applied single-variant analyses with an animal model, and identified thousands of significant associations with C6:0, C8:0, C10:0, C12:0, C14:0, and C6:0–C14:0. For C8:0 in summer milk samples, the genomic region located between 29 and 34 Mbp on BTA17 revealed a total of 646 significant associations. The most significant associations [–log10(P-value) = 7.82] were 8 SNP in perfect linkage disequilibrium. After fitting one of these 8 SNP as a fixed effect in the model, and re-running the single-variant analyses, no further significant associations were found for any of the 6 FA or C6:0–C14:0. These findings suggest that one polymorphism underlying this QTL on BTA17 influences multiple de novo synthesized milk FA. Thirteen genes in the QTL region were identified and analyzed carefully. Six out of the 8 SNP that showed the strongest associations were located in the La ribonucleoprotein domain family, member 1B (LARP1B) gene, and we suggest LARP1B as a primary candidate gene. Another gene of interest for this QTL region might be PKL4. None of these suggested candidate genes have previously been associated with milk fat synthesis or milk FA composition.  相似文献   

6.
A major quantitative trait locus (QTL) for milk fat content and fatty acids in both milk and adipose tissue has been detected on Bos taurus autosome 19 (BTA19) in several cattle breeds. The objective of this study was to refine the location of the QTL on BTA19 for bovine milk fat composition using a denser set of markers. Opportunities for fine mapping were provided by imputation from 50,000 genotyped single nucleotide polymorphisms (SNP) toward a high-density SNP panel with up to 777,000 SNP. The QTL region was narrowed down to a linkage disequilibrium block formed by 22 SNP covering 85,007 bp, from 51,303,322 to 51,388,329 bp on BTA19. This linkage disequilibrium block contained 2 genes: coiled-coil domain containing 57 (CCDC57) and fatty acid synthase (FASN). The gene CCDC57 is minimally characterized and has not been associated with bovine milk fat previously, but is expressed in the mammary gland. The gene FASN has been associated with bovine milk fat and fat in adipose tissue before. This gene is a likely candidate for the QTL on BTA19 because of its involvement in de novo fat synthesis. Future studies using sequence data of both CCDC57 and FASN, and eventually functional studies, will have to be pursued to assign the causal variant(s).  相似文献   

7.
Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method outperformed the MLMA in accuracy and precision. The haplotype-based cLDLA method allowed for a more precise mapping and the definition of ancestral and derived QTL alleles, both of which are essential for the detection of underlying quantitative trait nucleotides.  相似文献   

8.
Data from the joint Nordic breeding value prediction for Danish and Swedish Holstein grandsire families were used to locate quantitative trait loci (QTL) for female fertility traits in Danish and Swedish Holstein cattle. Up to 36 Holstein grandsires with over 2,000 sons were genotyped for 416 microsatellite markers. Single trait breeding values were used for 12 traits relating to female fertility and female reproductive disorders. Data were analyzed by least squares regression analysis within and across families. Twenty-six QTL were detected on 17 different chromosomes. The best evidence was found for QTL segregating on Bos taurus chromosome (BTA)1, BTA7, BTA10, and BTA26. On each of these chromosomes, several QTL were detected affecting more than one of the fertility traits investigated in this study. Evidence for segregation of additional QTL on BTA2, BTA9, and BTA24 was found.  相似文献   

9.
Female fertility has a major role in dairy production and affects the profitability of dairy cattle. The genetic progress obtained by traditional selection can be slow because of the low heritability of classical fertility traits. Endocrine fertility traits based on progesterone concentration in milk have higher heritability and more directly reflect the cow's own reproductive physiology. The aim of our study was to identify genomic regions for 7 endocrine fertility traits in dairy cows by performing a genome-wide association study with 54,000 SNP. The next step was to fine-map targeted genomic regions with significant SNP using imputed sequences to identify potential candidate genes associated with the normal and atypical progesterone profiles. The association between a SNP and a phenotype was assessed by a single SNP analysis, using a linear mixed model that included a random polygenic effect. Phenotypes and genotypes were available for 1,126 primiparous and multiparous Holstein-Friesian cows from research herds in Ireland, the Netherlands, Sweden, and the United Kingdom. In total, 44 significant SNP associated with 7 endocrine fertility traits were identified on Bos taurus autosome (BTA) 1–4, 6, 8–9, 11–12, 14–17, 19, 21–24, and 29. Three chromosomes, BTA8, BTA17, and BTA23, were imputed from 54,000 SNP genotypes to the whole-genome sequence level with Beagle version 4.1. The fine-mapping identified several significant associations with delayed cyclicity, cessation of cyclicity, commencement of luteal activity, and inter-ovulatory interval. These associations may contribute to an index of markers for genetic improvement of fertility. Several potential candidate genes reported to affect reproduction were also identified in the targeted genomic regions. However, due to high linkage disequilibrium, it was not possible to identify putative causal genes or polymorphisms for any of the regions.  相似文献   

10.
Linkage, linkage disequilibrium, and combined linkage and linkage disequilibrium analyses were performed to map quantitative trait loci (QTL) affecting calving and conformation traits on Bos taurus autosome 18 (BTA18) in the German Holstein population. Six paternal half-sib families consisting of a total of 1,054 animals were genotyped on 28 genetic markers in the telomeric region on BTA18 spanning approximately 30 Mb. Calving traits, body type traits, and udder type traits were investigated. Using univariately estimated breeding values, maternal and direct effects on calving ease and stillbirth were analyzed separately for first- and further-parity calvings. The QTL initially identified by separate linkage and linkage disequilibrium analyses could be confirmed by a combined linkage and linkage disequilibrium analysis for udder composite index, udder depth, fore udder attachment, front teat placement, body depth, rump angle, and direct effects on calving ease and stillbirth. Concurrence of QTL peaks and a similar shape of restricted log-likelihood ratio profiles were observed between udder type traits and for body depth and calving traits, respectively. Association analyses were performed for markers flanking the most likely QTL positions by applying a mixed model including a fixed allele effect of the maternally inherited allele and a random polygenic effect. Results indicated that microsatellite marker DIK4234 (located at 53.3 Mb) is associated with maternal effects on stillbirth, direct effects on calving ease, and body depth. A comparison of effects for maternally inherited DIK4234 alleles indicated a favorable, positive correlation of maternal and direct effects on calving. Additionally, the association of maternally inherited DIK4234 marker alleles with body depth implied that conformation traits might provide the functional background of the QTL for calving traits. For udder type traits, the strong coincidence of QTL peaks and the position of the QTL in a region previously reported to harbor QTL for somatic cell score indicated that effects of QTL for udder type traits might be correlated with effects of QTL for udder health traits on BTA18. Our results suggest that loci in the middle to telomeric region on BTA18 with effect on conformation traits may also contribute to the genetic variance of calving and udder health traits. Further analyses are required to identify the causal mutations affecting conformation and calving traits and to investigate the correlation of effects for loci associated with conformation, calving, and udder health traits.  相似文献   

11.
Genome-wide association testing facilitates the identification of genetic variants associated with complex traits. Mapping genes that promote genetic resistance to mastitis could reduce the cost of antibiotic use and enhance animal welfare and milk production by improving outcomes of breeding for udder health. Using imputed whole-genome sequence variants, we carried out association studies for 2 traits related to udder health, udder index, and milking speed in Nordic Holstein cattle. A total of 4,921 bulls genotyped with the BovineSNP50 BeadChip array were imputed to high-density genotypes (Illumina BovineHD BeadChip, Illumina, San Diego, CA) and, subsequently, to whole-genome sequence variants. An association analysis was carried out using a linear mixed model. Phenotypes used in the association analyses were deregressed breeding values. Multitrait meta-analysis was carried out for these 2 traits. We identified 10 and 8 chromosomes harboring markers that were significantly associated with udder index and milking speed, respectively. Strongest association signals were observed on chromosome 20 for udder index and chromosome 19 for milking speed. Multitrait meta-analysis identified 13 chromosomes harboring associated markers for the combination of udder index and milking speed. The associated region on chromosome 20 overlapped with earlier reported quantitative trait loci for similar traits in other cattle populations. Moreover, this region was located close to the FYB gene, which is involved in platelet activation and controls IL-2 expression; FYB is a strong candidate gene for udder health and worthy of further investigation.  相似文献   

12.
We present the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in long-chain milk fatty acids. Milk-fat composition phenotypes were available on 1,905 Dutch Holstein-Friesian cows. A total of 849 cows and their 7 sires were genotyped for 1,341 single nucleotide polymorphisms across all Bos taurus autosomes (BTA). We detected significant QTL on BTA14, BTA15, and BTA16: for C18:1 cis-9, C18:1 cis-12, C18:2 cis-9,12, CLA cis-9,trans-11, C18:3 cis-9,12,15, the C18 index, the total index, total saturated fatty acids, total unsaturated fatty acids (UFA), and the ratio of saturated fatty acids:unsaturated fatty acids on BTA14; for C18:1 trans fatty acids on BTA15; and for the C18 and CLA indices on BTA16. The QTL explained 3 to 19% of the phenotypic variance. Suggestive QTL were found on 16 other chromosomes. The diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphism on BTA14, which is known to influence fatty acid composition, most likely explains the QTL that was detected on BTA14.  相似文献   

13.
Left-sided displacement of the abomasum (LDA) is a frequent disease in dairy cattle causing significant financial losses for dairy farmers. Heritability (h2) of this complex disease was estimated at up to 0.5 in German Holstein (GH) cattle. Using the Bovine High Density BeadChip (Illumina Inc., San Diego, CA) comprising 588,753 single nucleotide polymorphisms (SNP) after quality control for 126 LDA cases and 280 population-based controls, we used a mixed linear model analysis in a genome-wide association study (GWAS). We identified 6 genomic regions for LDA on bovine chromosomes 2, 8, 13, 20, 24, and X that were significantly associated with LDA. Each of these regions was covered by 4 to 12 LDA-associated SNP. Single SNP within these regions explained up to 7.3% of the phenotypic variance. An independent sample of 1,554 GH cows, including 539 controls and 1,015 cases, were genotyped for 8 SNP highly associated with LDA on Bos taurus autosomes (BTA) 2, 8, 13, and 24, as well as 6 SNP located in previously identified LDA regions on BTA1, 5, 11, and 27 using competitive allele-specific PCR genotyping technology (KASP). The analysis using the KASP genotypes confirmed LDA-associated loci on BTA2, 8, 13, and 27. These genomic regions may contribute to the susceptibility to LDA in Holstein cows and may harbor functional variants for LDA.  相似文献   

14.
This study presents a scan of the ovine genome to identify quantitative trait loci (QTL) influencing the somatic cell score (SCS), a classical indicator of subclinical mastitis in sheep, and a subsequent high-resolution analysis of one of the identified QTL regions based on the analysis of whole-genome sequence data sets. A half-sib commercial population of Churra sheep genotyped with a 50K SNP chip was analyzed using linkage analysis (LA) and combined linkage and linkage disequilibrium analysis (LDLA). By LA, 2 5% chromosome-wide significant QTL on OAR5 and OAR25 and one 5% genome-wide significant QTL on ovine chromosome 20 (OAR20) were detected, whereas 22 significant associations were identified by LDLA. Two of the associations detected by LDLA replicated LA-detected effects (OAR20, OAR25). We compared the detected associations with previously reported QTL in sheep and cattle, and functional candidate genes were identified within the estimated confidence intervals. We then performed a high-resolution analysis of the OAR20 QTL region, the most significant QTL region identified by LA that replicated a QTL previously described in Churra sheep for SCS using microsatellite markers. For that, 2 segregating trios of 2 segregating families for the OAR20 QTL (each including the Qq sire and 2 daughters, QQ and qq) were selected for whole-genome sequencing. The bioinformatic analysis of the 6 sequenced samples performed across the genomic interval considered (14.2–41.7 Mb) identified a total of 227,030 variants commonly identified by 2 independent software packages. For the 3 different concordance tests considered, due to discrepancies regarding the QTL peak in the segregating families, the list of mutations concordant with the QTL segregating pattern was processed to identify the variants identified in immune-related genes that show a moderate/high impact on the encoded protein function. Among a list of 85 missense variants concordant with the QTL segregation pattern that were within candidate immune-related genes, 13 variants distributed across 7 genes [PKHD1, NOTCH4, AGER, ENSOARG00000009395 (HLA-C, Homo sapiens), ENSOARG00000015002 (HLA-B, H. sapiens), MOG, and ENSOARG00000018075 (BoLA, Bos taurus, orthologous to human HLA-A] were predicted to cause deleterious effects on protein function. Future studies should assess the possible associations of the candidate variants identified herein in commercial populations with indicator traits of udder inflammation (SCS, clinical mastitis).  相似文献   

15.
Genome scans for detection of bovine quantitative trait loci (QTL) were performed via variance component linkage analysis and linkage disequilibrium single-locus regression (LDRM). Four hundred eighty-four Holstein sires, of which 427 were from 10 grandsire families, were genotyped for 9,919 single nucleotide polymorphisms (SNP) using the Affymetrix MegAllele GeneChip Bovine Mapping 10K SNP array. A hybrid of the granddaughter and selective genotyping designs was applied. Four thousand eight hundred fifty-six of the 9,919 SNP were located to chromosomes in base-pairs and formed the basis for the analyses. The mean polymorphism information content of the SNP was 0.25. The SNP centimorgan position was interpolated from their base-pair position using a microsatellite framework map. Estimated breeding values were used as observations, and the following traits were analyzed: 305-d lactation milk, fat, and protein yield; somatic cell score; herd life; interval of calving to first service; and age at first service. The variance component linkage analysis detected 102 potential QTL, whereas LDRM analysis found 144 significant SNP associations after accounting for a 5% false discovery rate. Twenty potential QTL and 49 significant SNP associations were in close proximity to QTL cited in the literature. Both methods found significant regions on Bos taurus autosome (BTA) 3, 5, and 16 for milk yield; BTA 14 and 19 for fat yield; BTA 1, 3, 16, and 28 for protein yield; BTA 2 and 13 for calving to first service; and BTA 14 for age at first service. Both approaches were effective in detecting potential QTL with a dense SNP map. The LDRM was well suited for a first genome scan due to its approximately 8 times lower computational demands. Further fine mapping should be applied on the chromosomal regions of interest found in this study.  相似文献   

16.
The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.  相似文献   

17.
The identification of functional genetic variants and associated candidate genes linked to feed efficiency may help improve selection for feed efficiency in dairy cattle, providing economic and environmental benefits for the dairy industry. This study used RNA-sequencing data obtained from liver tissue from 9 Holstein cows [n = 5 low residual feed intake (RFI), n = 4 high RFI] and 10 Jersey cows (n = 5 low RFI, n = 5 high RFI), which were selected from a single population of 200 animals. Using RNA-sequencing, 3 analyses were performed to identify: (1) variants within low or high RFI Holstein cattle; (2) variants within low or high RFI Jersey cattle; and (3) variants within low or high RFI groups, which are common across both Holstein and Jersey cattle breeds. From each analysis, all variants were filtered for moderate, modifier, or high functional effect, and co-localized quantitative trait loci (QTL) classes, enriched biological processes, and co-localized genes related to these variants, were identified. The overlapping of the resulting genes co-localized with functional SNP from each analysis in both breeds for low or high RFI groups were compared. For the first two analyses, the total number of candidate genes associated with moderate, modifier, or high functional effect variants fixed within low or high RFI groups were 2,810 and 3,390 for Holstein and Jersey breeds, respectively. The major QTL classes co-localized with these variants included milk and reproduction QTL for the Holstein breed, and milk, production, and reproduction QTL for the Jersey breed. For the third analysis, the common variants across both Holstein and Jersey breeds, uniquely fixed within low or high RFI groups were identified, revealing a total of 86,209 and 111,126 functional variants in low and high RFI groups, respectively. Across all 3 analyses for low and high RFI cattle, 12 and 31 co-localized genes were overlapping, respectively. Among the overlapping genes across breeds, 9 were commonly detected in both the low and high RFI groups (INSRR, CSK, DYNC1H1, GAB1, KAT2B, RXRA, SHC1, TRRAP, PIK3CB), which are known to play a key role in the regulation of biological processes that have high metabolic demand and are related to cell growth and regeneration, metabolism, and immune function. The genes identified and their associated functional variants may serve as candidate genetic markers and can be implemented into breeding programs to help improve the selection for feed efficiency in dairy cattle.  相似文献   

18.
This work aimed to confirm previously reported quantitative trait loci (QTL) affecting the somatic cell score (SCS) in dairy cattle on Bos taurus autosomes (BTA) 4 and 26. A granddaughter design with selective genotyping was implemented that included half-sib families from 12 male lines of Italian Holstein cattle. The animals were genotyped for 5 microsatellite markers each on regions of BTA 4 (average marker spacing 9.42 cM) and BTA 26 (average marker spacing 5.26 cM), previously reported by other authors as carrying QTL for somatic cell count. Quantitative trait loci analyses were performed using interval mapping by regressing sire breeding values for SCS onto genotype probabilities at 1-cM intervals along the 2 chromosome regions. Breeding values for SCS were estimated for the whole population using a test-day repeatability animal model. Results were not significant on a chromosome basis, but a possible QTL was found at BM4505 on BTA 26, confirming this region for further studies of QTL affecting SCS in the Italian Holstein population.  相似文献   

19.
Natural antibodies (NAb) are produced without any antigenic stimulation as a part of the innate immune system and provide a first line of defense against pathogens. Hence, they may be a useful trait when estimating an animal's potential immune competence and in selection for disease resistance. The aim of this study was to identify genomic regions associated with different NAb traits in milk and potentially describe candidate genes. Milk samples from 1,695 first-lactation Holstein Friesian cows with titer measurements for keyhole limpet hemocyanin, lipopolysaccharide, lipoteichoic acid, and peptidoglycan-binding total NAb and isotypes IgG1, IgM, and IgA were used. Genome-wide association study analyses were performed using imputed 777K SNP genotypes, accounting for relationships using pedigree information. Functional enrichment analysis was performed on the significantly associated genomic regions to look for candidate genes. For IgM NAb, significant associations (false discovery rate <0.05) were found on Bos taurus autosome (BTA) 17, 18, and 21 with candidate genes related to immunoglobulin structure and early B cell development. For IgG1, associations were found on BTA3, and we confirmed a quantitative trait loci on BTA21 previously reported for IgG NAb in serum. Our results provide new insights into the regulation of milk NAb that will help unravel the complex relationship between milk immunoglobulins and disease resistance in dairy cattle.  相似文献   

20.
Whole-genome association study for milk protein composition in dairy cattle   总被引:2,自引:0,他引:2  
Our objective was to perform a genome-wide association study for content in bovine milk of αS1-casein (αS1-CN), αS2-casein (αS2-CN), β-casein (β-CN), κ-casein (κ-CN), α-lactalbumin (α-LA), β-lactoglobulin (β-LG), casein index, protein percentage, and protein yield using a 50K single nucleotide polymorphism (SNP) chip. In total, 1,713 Dutch Holstein-Friesian cows were genotyped for 50,228 SNP and a 2-step association study was performed. The first step involved a general linear model and the second step used a mixed model accounting for all family relationships. Associations with milk protein content and composition were detected on 20 bovine autosomes. The main genomic regions associated with milk protein composition or protein percentage were found on chromosomes 5, 6, 11, and 14. The number of chromosomal regions showing significant (false discovery rate <0.01) effects ranged from 3 for β-CN and 3 for β-LG to 12 for αS2-CN. A genomic region on Bos taurus autosome (BTA) 6 was significantly associated with all 6 major milk proteins, and a genomic region on BTA 11 was significantly associated with the 4 caseins and β-LG. In addition, regions were detected that only showed a significant effect on one of the milk protein fractions: regions on BTA 13 and 22 with effects on αS1-CN; regions on BTA 1, 9, 10, 17, 19, and 28 with effects on αS2-CN; a region on BTA 6 with an effect on β-CN; regions on BTA 13 and 21 with effects on κ-CN; regions on BTA 1, 5, 9, 16, 17, and 26 with effects on α-LA; and a region on BTA 24 with an effect on β-LG. The proportion of genetic variance explained by the SNP showing the strongest association in each of these genomic regions ranged from <1% for αS1-CN on BTA 22 to almost 100% for casein index on BTA 11. Variation associated with regions on BTA 6, 11, and 14 could in large part but not completely be explained by known protein variants of β-CN (BTA 6), κ-CN (BTA 6), and β-LG (BTA 11) or DGAT1 variants (BTA 14). Our results indicate 3 regions with major effects on milk protein composition, in addition to several regions with smaller effects involved in the regulation of milk protein composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号