首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用OM、XRD、SEM、EDS和电子拉伸试验机研究了Sr对AZ81镁合金β-Mg17Al12析出相形态及力学性能的影响.结果表明,加入0.3%的Sr时,合金中β-Mg17Al12相得到了明显细化,合金中出现颗粒状及杆状Al4Sr新相.随着Sr含量增加,β-Mg17Al12相从连续网状变为不连续网状和块状,且合金常温力学性能在Sr含量为0.6%时达到最高.当Sr含量到0.9%时,β-Mg17Al12相数量进一步减少,Al4Sr相偏聚呈断续网状.AZ81-xSr镁合金经过T6处理后,在α-Mg相晶界及晶内析出了大量层片状或针状、点状β-Mg17Al12相,合金力学性能得到显著提高.随着Sr含量增加,晶界上不连续析出的β-Mg17Al12相层片间距减小,晶内连续析出的β-Mg17A112相减少.  相似文献   

2.
采用自制实验装置研究了ca和Sr对AE41(Mg-4A1-RE)合金高温压蠕变行为,并利用XRD和SEM对合金压蠕变前后的组织进行了分析.结果表明:在150℃和100 MPa条件下,添加一定量的Ca和Sr后合金的稳态蠕变速率和总蠕变量均小于AE41合金,改善了AE41合金的抗蠕变性能.铸态AE41合金由a-Mg基体和AI11Nd3相组成.在高温蠕变条件下,针状AI11Nd3相不稳定易发生分解,导致AE4l合金抗蠕变能力下降.在AE41合金中加入Ca和Sr后,针状Al11Nd3逐渐被Al2Ca、Al4Sr及少量的Al2Nd代替.分布在晶界的Al2Ca和Al4Sr有很高的热稳定性,提高了合金的抗蠕变性能.  相似文献   

3.
试验研究了Sr对Mg-9Li-Ml合金挤压态显微组织和高温力学性能的影响.通过显微观察可知,元素Sr富集在晶界处以Al4Sr化合物的形式存在,并对Mg-9U-3Al合金中α相具有良好的细化作用.在373 K温度下进行拉伸试验的结果表明,当Sr含量为2.5%时合金强度达到183.7 MPa,但伸长率有所下降.一方面由于Sr在晶界处的吸附作用使晶粒细化;另一方面A14Sr相提高了合金的强度和耐热性能,但大量Al4Sr的存在会割裂基体,使强度降低.  相似文献   

4.
以Mg-6Al合金为基体,分别单一添加稀土Nd、Sr和复合添加稀土Nd和碱土Sr元素,采用水冷模工艺制备Mg-6Al-6Nd,Mg-6Al-2Sr和Mg-6Al-2Sr-2Nd耐热镁合金,并比较研究单一添加Nd或Sr和复合添加稀土Nd和碱土Sr对合金组织结构和蠕变性能的影响。结果表明:复合添加稀土Nd和碱土Sr后,合金中除了析出第二相Al2Nd、Al11Nd3和Al4Sr外,还析出Sr和Nd相互取代的Al4(Sr,Nd)和Al11(Nd,Sr)3复合相;在Mg-6Al-2Sr基础上添加2%Nd,不仅细化合金枝晶间距,还显著地提高第二相的分布密度,增强合金蠕变过程中位错与第二相交互作用,提高合金的蠕变性能。  相似文献   

5.
Nd对Mg-6Al铸态合金拉伸性能的影响   总被引:2,自引:0,他引:2  
研究Nd对Mg-6Al铸态合金拉伸性能的影响。结果表明:室温和175 ℃下,Mg-6Al-xNd(x=0,2,4,6,质量分数, 下同)合金的屈服强度随Nd含量增加而增加,在6.0%Nd时达到最大;抗拉强度和延伸率在4.0%Nd时达到最大,当Nd含量上升至6.0%时,两者均有少量下降。组织分析表明,Nd在Mg-6Al中以针状Al11Nd3和多边形状Al2Nd相存在,其中前者含量明显高于后者,为主要析出相。Al11Nd3相析出于枝晶界和晶界,有效细化了枝晶间距和晶粒度。通过建立软硬体复合模型对合金拉伸过程进行力学分析,并结合拉伸断口观察,综合认为Mg-6Al-xNd合金拉伸性能的提高主要归结于Al11Nd3相引起的细晶强化和第二相强化作用。Nd含量达到6.0%时合金抗拉强度和延伸率出现少量下降,主要归结于大块脆性相Al2Nd含量的增加  相似文献   

6.
研究了Nd含量(0、1.0%、2.0%、3.0%)对Mg-4Al-1Sr合金显微组织及室温、高温力学性能的影响.研究结果表明,合金中添加Nd后,细化了合金晶粒,形成高熔点的针状强化相Al11Nd3,很大程度上提高了合金力学性能.当Nd含量达到2.0%时,合金的室温、高温抗拉强度分别达到了206 MPa和138 MPa,比未添加Nd时提高了20%和14%.随着Nd含量的进一步增加,合金中析出了大块状Al2Nd相,该相的形成降低了合金的力学性能.  相似文献   

7.
Sr对AZ91镁合金组织及力学性能的影响   总被引:2,自引:0,他引:2  
采用光学显微镜、扫描电子显微镜和X射线衍射仪等研究Sr对AZ91镁合金组织及力学性能的影响.结果表明:添加微量Sr可以细化并离散AZ91合金的铸态共晶组织,在合金晶界处Sr与Al生成多角块状或杆状的Al4Sr高熔点相;当Sr含量为0.2%时,AZ91-0.2Sr合金的综合力学性能最优,AZ91-Sr合金的时效进程与AZ91合金相比明显被抑制.由于这些析出相及合金晶界附近Al4Sr高熔点相的强化作用,AZ91-0.2Sr合金经T6处理后的室温和高温力学性能皆优于原AZ91合金的.  相似文献   

8.
Mg-5Al-0.8Ca-0.2La-xSr合金的显微组织及高温力学性能   总被引:2,自引:0,他引:2  
采用真空熔化、精炼和无氧化重力铸造工艺,制备了不同Sr含量的Mg-5Al-0.8Ca-0.2La镁合金试样.研究了Sr对该镁合金的显微组织、室温与150~200 ℃温度区间内力学性能的影响.结果表明:基体合金组织除含α-Mg相外,主要由骨骼状和条状的Al2Ca相、点状的Al11La3颗粒相以及少量的β-Mg17Al12相组成;Sr的加入显著细化了基体合金的显微组织,抑制β-Mg17Al12相的析出,并在晶界上析出Mg-Al-Sr三元耐热相,提高了合金的高温力学性能;随着Sr含量的增加,虽然合金的室温抗拉强度和伸长率呈下降趋势,但合金的高温抗拉强度(σb)和屈服强度(σ0.2)得到明显提高;当Sr含量在0.5%时,合金的综合力学性能最佳.  相似文献   

9.
通过金相、扫描电镜、电子探针和力学性能测试等方法研究了稀土元素Gd和Nd对AZ80镁合金铸态和挤压态组织和力学性能的影响。结果表明,适当添加稀土元素可以使AZ80镁合金的铸态树枝晶基本消失,晶界处层片状Mg17Al12相增多。均匀化后晶粒尺寸明显减小。合金经挤压后均发生了动态再结晶,动态析出的β相沿着再结晶晶粒的晶界分布。加入2%RE(Gd,Nd)后,析出相阻碍再结晶晶粒长大和粒子激发形核再结晶共同作用起到了细晶强化的效果,且高硬质Al2Gd和Al2Nd相能有效阻碍位错运动从而大幅度提高了合金的屈服强度。随着RE(Gd,Nd)含量的增多,β相析出减少,稀土相颗粒变大,弱化了动态再结晶效果,导致应力集中,强度下降。当加入2%RE(Gd,Nd)时其抗拉强度最大,综合性能较好。  相似文献   

10.
Sr,Y对AZ31镁合金显微组织与力学性能的影响   总被引:2,自引:1,他引:1  
用金属型铸造法制备了不同Sr、Y含量的AZ31镁合金试样,借助光学显微镜、扫描电镜、能谱分析、XRD、力学性能测试等方法研究了Sr、Y对AZ31镁合金显微组织和力学性能的影响。结果表明,微量Sr的添加可细化AZ31镁合金的显微组织,并且在晶界处有杆状的Al4Sr形成;微量的Sr、Y复合添加可使AZ31镁合金显微组织更加细化,晶内有颗粒状的Al2Y析出,同时β-Mg17Al12相消失;合金的常温和高温力学性能随Sr、Y的添加有明显提高。  相似文献   

11.
研究了添加不同含量的锶(Sr)及固溶处理(T4)对AM50镁合金显微组织和高温(150℃)拉伸性能的影响。结果表明:当Sr加入量为0.7wt%和1.4wt%时,AM50合金中形成了层片状的Al4Sr新相,而Mg17Al12相被抑制形成,固溶处理使Al4Sr相由层片状转变为颗粒状。当Sr加入量为2.8wt%和3.5wt%时,AM50合金中形成了骨骼状的Sr5Al9新相,固溶处理使热稳定性较高的Sr5Al9相由骨骼状向层片状和颗粒状转变。加入Sr能细化晶粒并显著提高合金在150℃下的拉伸性能,固溶处理明显提高了AM50-2.8Sr和AM50-3.5Sr合金高温下的抗拉强度,但对AM50-0.7Sr和AM50-1.4Sr合金高温拉伸性能影响较小。  相似文献   

12.
利用磁悬浮真空高频感应加热法熔炼高质量的镁锂合金,通过Si、Nd元素复合添加来研究其对Mg-11Li-3Al合金组织与力学性能的影响。结果表明:加入Si、Nd元素后,组织中主要生成Mg_2Si和Al_(11_Nd_3 2种第二相,其中Si的添加能够促使合金组织中形成篆体形貌的黑色析出物聚集区,而Nd的加入能够细化这种黑色棒状的析出物,并减小晶粒尺寸、洁净组织。当Nd的添加量为1%(质量分数)时其晶粒细化的效果最佳。经过XRD和EDS分析发现,这种黑色棒状的析出物为Mg_2Si相和Al_(11)Nd_3相的结合体。铸态合金的抗拉强度随着Si含量的增加递增,最后趋于稳定;其塑性并不会随某一种或是复合元素的添加而单调变化。实验得到了一种综合力学性能最佳的合金Mg-11Li-3Al-1Si-1Nd,其抗拉强度和伸长率分别为212.3 MPa和46.2%。  相似文献   

13.
Nd添加对AZ80镁合金显微组织及力学性能的影响(英文)   总被引:3,自引:0,他引:3  
研究添加稀土元素Nd对AZ80镁合金显微组织及力学性能的影响。结果表明:添加1.0%Nd元素可以有效地改善AZ80合金的铸态组织,其晶粒尺寸由448μm细化至125μm,凝固组织中出现条状的Al11Nd3相和块状的Al2Nd相,且β-Mg17Al12相显著细化,由连续网状变为不连续分布。时效过程中Nd元素的添加抑制了晶界处不连续析出相的出现,并推迟合金时效峰值的出现。在AZ80合金中添加1.0%Nd时,合金的综合力学性能最佳,屈服强度、抗拉强度和伸长率分别为103.7MPa、224.0MPa和8.4%。该合金T6态的屈服强度和抗拉强度分别达到141.1和231.1MPa。  相似文献   

14.
用OM,SEM和XRD等方法研究了挤压态Mg-Al-Ca-x Nd(x=0~1.76,质量分数,%)合金的显微组织和析出相以及该合金在室温和高温下的力学性能。结果表明,Nd的添加会使基体中形成Al2Nd和Al11Nd3相,并且细化Mg-Al-Ca合金的晶粒。随着Nd添加量的增加,Al2Nd和Al11Nd3相的数量也随之增加。当添加1.76%Nd时,合金的平均晶粒尺寸从不含Nd的4.80μm变为2.39μm。由于第二相的析出和晶粒细化,室温下的力学性能也得到改善。随着Nd元素含量的增加,合金的室温抗拉伸强度由267MPa提高到304 MPa,屈服强度从144 MPa提高到203 MPa,延伸率从20.0%下降到16.9%。在150℃时,随着Nd含量的增加,拉伸强度从192 MPa增加到229 MPa,屈服强度从140 MPa增加到159 MPa,伸长率从48.6%下降到29.3%。  相似文献   

15.
In order to improve the mechanical properties of Mg-Li alloy with single β phase structure, Mg-12Li-3Al-xNd(x=0.3, 0.7, 1.1, 2.0wt.%) alloy was prepared. Subsequently, the as-cast microstructure and mechanical properties were observed and tested. The results showed that the structure of Mg-12Li-3Al-xNd(x=0.3, 0.7, 1.1, 2.0wt.%) as-cast alloy was composed of β phase matrix and Al_2Nd, Al_(11)Nd_3, MgLiAl_2, Al_4Li_9 and AlLi phases. With the increase of Nd content in the alloy, the Al-Nd intermetallic compounds have a trend to change from needle-like Al_(11)Nd_3 to granular Al_2Nd. The hardness of as-cast Mg-12Li-3Al-xNd(x=0.3, 0.7, 1.1, 2.0wt.%) alloy was stable at room temperature. The tensile strength of Mg-12Li-3Al-1.1Nd was as high as 180 MPa, the elongation rate of Mg-12Li-3Al-0.7Nd reached 53.7%, and the comprehensive mechanical properties of Mg-12Li-3Al-2.0Nd was the best. PLC phenomenon occurred during the tensile process of the alloys at room temperature. Therefore, the β-based Mg-Li alloy with good plasticity as well as enhanced strength can be obtained by a moderate addition of Nd and Al.  相似文献   

16.
通过调整元素Y的含量,制备了多种Mg-Y-RE-Zr镁合金,对合金不同状态下微观组织和力学性能进行了分析和测试.结果表明,不同合金晶界上的化合物以Mg24Y5,Mg41Nd5,Mg5Gd等为主,随着元素Y含量的增加,晶界上的化合物数量和尺寸增加,晶粒平均尺寸变化较小,保持在50~60μm;经过均匀化处理(535℃×24 h)后,合金中化合物的分布由铸态时连续的岛状分布变为弥散细小的颗粒状分布,Mg5Gd相基本上全部分解并溶入基体中,合金中弥散分布的点状颗粒相主要为Mg24Y5和Mg41Nd5相;经过挤压变形后,合金的组织得到细化,平均晶粒尺寸在20μm左右,合金的抗拉强度、屈服强度和伸长率都有大幅度的提高,其中Mg-5Gd-5Y-3Nd.0.5Zr合金表现出了较好的综合力学性能;在设计的合金中,元素Y的含量(质量分数)应控制在5%以下.  相似文献   

17.
Mg-Nd-Gd-Zn-Zr镁合金铸造组织与力学性能   总被引:2,自引:0,他引:2  
采用正交试验方法,通过砂型铸造制备9种不同成分的Mg-Nd-Gd-Zn-Zr系镁合金。研究该系列镁合金的铸造组织和室温力学性能,并通过对力学性能试验数据的分析,研究主要合金化稀土元素Gd和Nd的作用。研究发现:该系列镁合金铸态组织为α-Mg基体和Mg12Nd化合物。经过固溶处理后,铸态组织中晶界上的化合物大部分溶入基体,但在晶界上还有一些颗粒状的化合物。Gd含量越高,合金的室温抗拉强度、屈服强度和延伸率就越高。Nd含量越高,抗拉强度和屈服强度也越好,但延伸率在Nd含量超过2水平(2.85%)后会降低。抗拉强度和屈服强度受Nd含量的影响最大,Gd含量的影响次之。Zn含量越高屈服强度越高,但抗拉强度和延伸率降低,其中延伸率受Zn含量的影响最大。  相似文献   

18.
The microstructure and strengthening mechanisms of as-cast Mg-6Al-6Nd alloy were studied. The results show that the addition of 6 wt.% Nd into Mg-6Al alloy leads to the precipitation of Al11Nd3 and Al2Nd phases and decrease in the content of Al solid soluted in Mg-Al matrix. The volume fractions of Al11Nd3 and Al2Nd phases are 3.64% and 0.34%, respectively. Compared with Mg-6Al alloy, the ultimate strength, yielding strength, and elongation of Mg-6Al-6Nd alloy at room temperature and 175°C are enhanced in some degrees. The strengthening mechanisms of Mg-6Al-6Nd alloy are mainly composed of solid solution strengthening of Al solid soluted in Mg-Al matrix and grain refinement strengthening, dispersion strengthening, and composite strengthening brought by the precipitation of Al11Nd3 phase. The composite strengthening includes the load transfer from the matrix to Al11Nd3 phase and the enhancement of dislocation density due to the geometrical mismatch and thermal mismatch between the matrix and Al11Nd3 phase.  相似文献   

19.
The effects of rare earth (RE) elements Y and Nd on the microstructure and mechanical properties of Mg-6Al magnesium alloy were investigated. The results show that a proper level of RE elements can obviously refine the microstructure of Mg-6Al magnesium alloys, reduce the quantity of/β-Mg17Al12 phase and form Al2Y and AI2Nd phases. The combined addition of Y and Nd dramatically enhances the tensile strength of the alloys in the temperature range of 20-175℃. When the content of RE elements is up to 1.8%, the values of tensile strength at room temperature and at 150℃ simultaneously reach their maximum of 253 MPa and 196 MPa, respectively.The main mechanisms of enhancement in the mechanical properties of Mg-6Al alloy with Y and Nd are the grain refining strengthening and the dispersion strengthening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号