首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of two-phase heat transfer devices using capillary action in a microscale porous structure such as a loop heat pipe (LHP) is a promising heat transport technology. This is because they have characteristics of higher heat transfer power and longer heat transport distances with no electrical power compared with conventional heat pipes. The thermal performance of an LHP is governed by the thermofluid behavior in a microscale porous structure called the wick. In this research, high-performance wicks made of polymer have been developed, and their pore distribution and permeability were evaluated. The effects of the vapor channel's shape on the loop's thermal performance have been investigated by calculation and experiment to enhance evaporator performance. A mathematical model of the evaporator considering super heat in the channel, pressure drop across the wick, and two-phase pressure loss on the boundary face between the wick and the evaporator case was newly developed. The experiment was also conducted as a function of the groove shapes. From calculations and test results, it was found that in order to increase the maximum heat transport capability and decrease the operating temperature, the groove should be well distributed.  相似文献   

2.
Experiments were carried out to investigate the effects of sinusoidal forced oscillation of the inlet flow rate on the time variations of local liquid film thickness and the frequencies of large wave’s passing in steam–water annular two-phase flows. The liquid film thickness oscillated with the same period as the inlet flow rate. The mean film thickness in the thin film regions decreased and approached to an asymptotic value with an increase in the oscillation period of the inlet flow rate. This result was consistent with the experimental results of the occurrence of liquid film dryout under flow oscillation conditions reported in the literature. It was hence considered that the axial liquid transport from the thick to thin film regions mitigates the reduction of the critical heat flux caused by the flow oscillation. It was also found that the wave frequency in the thin film region increased with a decrease in the oscillation period. This observation suggested that the disturbance waves contribute to the enhancements of the liquid transport and consequently the critical heat flux associated with the liquid film dryout under flow oscillation conditions.  相似文献   

3.
An experimental study was carried out for the heat transfer characteristics and the flow patterns of the evaporator section using small diameter coiled pipes in a looped heat pipe (LHP). Two coiled pipes: the glass pipe and the stainless steel pipes were used as evaporator section in the LHP, respectively. Flow and heat transfer characteristics in the coiled tubes of the evaporator section were investigated under the different filling ratios and heat fluxes. The experimental results show that the combined effect of the evaporation of the thin liquid film, the disturbance caused by pulsation and the secondary flow enhanced greatly the heat transfer and the critical heat flux of the evaporator section. In final, two dimensionless empirical correlations were proposed for predicting the heat transfer coefficients of the evaporator section before and after dryout occurs.  相似文献   

4.
A simple theory was developed to elucidate the influence of sinusoidal oscillation of the inlet flow rate on the occurrence of liquid film dryout in an annular two-phase flow regime in a boiling channel. The theory assumes that the critical heat flux (CHF) under an oscillatory condition can be calculated from values in steady states provided that the effect of axial mixing of the liquid film is appropriately considered. The trends of CHFs calculated using a one-dimensional three-fluid model and those experimentally measured under atmospheric pressure were in reasonable agreement with the proposed theory. However, the CHF values measured under oscillatory conditions were usually higher in the experiment than in the numerical simulation, which indicated that axial liquid transport induced by disturbance waves might enhance axial mixing of the liquid film.  相似文献   

5.
In the present work the influence of various physical characteristics on the two-phase flow behavior in a self-heated porous medium has been studied using a numerical model, that is, the effects of heat generation rate, of porosity, of particle size, and of system pressure on the dryout process. To analyze the effect of these characteristics, the variation of both liquid volumetric fraction and liquid axial velocity is evaluated at the steady state or at the onset of a first boiled-out region. The analysis of computational results indicate that a qualitative tendency exists between the characteristics such as heat generation rate, porosity, effective particle diameter and the temporal development of the liquid volumetric fraction field up to dryout. In addition to these characteristics, a variation of fluid properties such as phase density, phase viscosity due to a change of system pressure can be used for gaining insight into the nature of two-phase flow behavior up to dryout.  相似文献   

6.
《Applied Thermal Engineering》2002,22(12):1369-1390
This paper presents an analytical/computer model to predict the performance of a brazed aluminum evaporator operating under dehumidifying conditions. The evaporator uses small hydraulic diameter, flat multi-channel tubes and louver fins. The in-tube refrigerant flow was divided into three regions including the two-phase, liquid deficient and superheat regions. For each region, correlations were selected from the open literature to calculate the local heat transfer and pressure drop. The effects of refrigerant pressure drop along tube and pressure losses at the tube entrance and exit were accounted for in the heat transfer calculations. The air-side fins were assumed to operate at the fully wet condition and the sensible heat transfer coefficient of the wet fins was assumed to be equal to that of the dry fins. The overall heat transfer coefficient was calculated using the enthalpy driving potential method. The total heat transfer rate and refrigerant pressure drop depend on the ratio of the number of tubes in the first and second passes. Parametric studies were done to illustrate selection of the preferred number of tubes per pass. The average refrigerant side heat transfer coefficient is sensitive to the dry-out vapor quality. However, the total heat transfer rate is relatively insensitive to the dry-out vapor quality. As the air inlet humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The program was used to design an R-404A evaporator, for which a prototype was built and tested. The program over-predicted the evaporator capacity by 8%. The over-prediction is believed due to flow mal-distribution in the branch tubes.  相似文献   

7.
In spray type evaporators using a conventional overhead spray method, a dry-out phenomenon occurs on the lower surface of the evaporator tubes under high surface heat flux conditions, and thus the heat transfer performance of the evaporator system is seriously impaired. This study shows that in a compact triangular-pitch shell-and-tube evaporator, the dry-out problem can be delayed through the use of an interior spray method, in which each heater tube within the bundle is sprayed simultaneously by two nozzles. The experimental results reveal that the shell-side heat transfer coefficients obtained using the proposed spray technique are significantly higher than those achieved in a conventional flooded type evaporator. The results also show that the heat transfer performance improves as the saturation temperature decreases since the density and thermal conductivity of the sprayed liquid increase. Finally, it is shown that for a constant heat flux and saturation temperature, the heat transfer coefficient increases with an increasing refrigerant mass flow rate.  相似文献   

8.
This paper presents the results of simulations using a two-phase separated flow model to study the heat transfer and flow characteristics of refrigerants during evaporation in a horizontal tube. A one-dimensional annular flow model of the evaporation of refrigerants under constant heat flux is developed. The basic physical equations governing flow are established from the conservation of mass, energy and momentum. The model is validated by comparing it with the experimental data reported in literature. The present model can be used to predict the variation of the temperature, heat transfer coefficient and pressure drop of various pure refrigerants flowing along a horizontal tube. It is found that the refrigerant temperature decreases along the tube corresponding to the decreasing of its saturation pressure. The liquid heat transfer coefficient increases with the axial length due to the reducing thickness of the liquid film. The evaporation rate of liquid refrigerant tends to decrease with increasing axial length, due to the decreasing latent heat transfer through the liquid–vapor interface. The developed model can be considered as an effective tool for evaporator design and can be used to choose appropriate refrigerants under designed conditions.  相似文献   

9.
蓄热水箱作为太阳能供暖系统的重要核心设备,其性能直接影响着储能系统的整体运行效率。设计一种基于圆柱形相变单元的相变储热装置,并搭建相变蓄热水箱性能测试平台,通过单一控制变量法得到储热装置放热过程的温度变化曲线。研究表明:对于空间一定的储热装置,在等质量相变材料(PCM)时,相变单元的直径对装置放热速率的影响较大;相变单元之间的间距对装置放热速率的影响较小;当增大换热流体(HTF)的入口流量及降低HTF入口温度时,能大大减少储热装置的放热时间,提高储热装置的整体性能。  相似文献   

10.
In tune with the falling film evaporation heat transfer test results described in Part 1, flow visualization of the boiling process and intertube flow mode transitions from droplet to column and sheet flows have been observed, and the onset of dryout results were obtained. A new empirical approach to describe falling film evaporation with a dominance of nucleate boiling that takes into account the onset of dryout has been proposed and is applicable to plain and enhanced tubes. The method predicts most of the current local measurements for R-134a to within ±20% for conditions without dryout (the desired design condition) and has also been extended to cover conditions with partial dryout. Furthermore, a criterion for predicting the onset of dryout as a function of heat flux has also been proposed for the four types of tubes.  相似文献   

11.
Results from various enhancement techniques to improve the performance of a recently developed two-phase heat spreader are reported. The spreader has a central evaporator section, with an integrated condenser along the edges. A micro-fabricated three-dimensional enhancement structure is employed to improve the heat transfer performance of the spreader. This study considers the performance of several liquid coolants to be used with the device and evaluates the effect of initial pressures on the thermal performance of the spreader plate. Liquids with lower boiling points were found to result in lower wall temperatures of the spreader plate due to earlier onset of boiling. Studies also showed an improvement in heat transfer performance with increase in stack height of the enhancement structures used in the evaporator section.  相似文献   

12.
Wastewater treatment is one of the most effective solutions to manage the problem of water scarcity. Falling film evaporators are excellent technology in wastewater treatment plants. These wastewater evaporators provide high heat transfer, short residence time in the heating zone, and high-purity distilled water. In the present study, the mechanism of turbulent falling film evaporation in a vertical tube has been investigated. A model has been developed for symmetrical two-dimensional pure and saline water flow in a vertical tube under constant wall heat flux. The numerical simulation has been carried out by a commercial computational fluid dynamics code. The evaporation of saturated liquid film is simulated utilizing a two-phase volume of fluid method and Tanasawa phase-change model. The main objective of this study is to evaluate the effects of water salinity, liquid Reynolds number, wall heat flux, and liquid film thickness on the two-phase heat transfer coefficient and vapor volume fraction. The numerical heat transfer coefficients are compared with the obtained results by Chen's empirical correlation. With a MAPE ≤ 11%, this study proves that the numerical method is highly effective at predicting the heat transfer coefficient. Moreover, the empirical coefficient of the Tanasawa model and the minimum thickness of the falling film are determined.  相似文献   

13.
The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium.  相似文献   

14.
An experimental study is presented for the heat transfer performance of a rectangular double-loop natural circulation system, in which the condensers are made of double tubes with water-steam as the working fluid. Detailed temperature measurements of the core fluid and the wall are made, from which overall heat transfer coefficients for the evaporator, condensers, and entire system are obtained. Parametric studies of the liquid charge level, fluid properties, and heating or cooling conditions on the heat transfer performance are presented and correlation equations are given. The results show that the overall heat transfer coefficients for the evaporator, condensers, and entire loop are all increasing with decreasing liquid charge level. Overhead phenomena at low liquid charge level and thermal oscillation at some situations are also observed and discussed.  相似文献   

15.
This paper deals with thermally induced meniscus oscillations in a two-phase system consisting of a liquid plug and a vapor bubble in a capillary tube of circular cross-section. This system represents the simplest version of a heat transfer device called “pulsating heat pipe” (PHP). Our purpose is to gain fundamental understanding of the physical processes that cause self-sustained thermally driven oscillations. A visualization experiment is performed and the oscillations of the liquid–vapor meniscus and the vapor pressure are observed. We propose next a theoretical model. It differs from existing models by the account of the two-phase equilibrium that occurs locally at the vapor–liquid interface and by introduction of the time varying wetting films through which the major part of the heat and mass transfer occurs. Results from the proposed model show a good agreement with the experiment.  相似文献   

16.
The thermal resistance to heat transfer into the evaporator section of heat pipes and vapor chambers plays a dominant role in governing their overall performance. It is therefore critical to quantify this resistance for commonly used sintered copper powder wick surfaces, both under evaporation and boiling conditions. The objective of the current study is to measure the dependence of thermal resistance on the thickness and particle size of such surfaces. A novel test facility is developed which feeds the test fluid, water, to the wick by capillary action. This simulates the feeding mechanism within an actual heat pipe, referred to as wicked evaporation or boiling. Experiments with multiple samples, with thicknesses ranging from 600 to 1200 μm and particle sizes from 45 to 355 μm, demonstrate that for a given wick thickness, an optimum particle size exists which maximizes the boiling heat transfer coefficient. The tests also show that monoporous sintered wicks are able to support local heat fluxes of greater than 500 W cm?2 without the occurrence of dryout. Additionally, in situ visualization of the wick surfaces during evaporation and boiling allows the thermal performance to be correlated with the observed regimes. It is seen that nucleate boiling from the wick substrate leads to substantially increased performance as compared to evaporation from the liquid free surface at the top of the wick layer. The sharp reduction in overall thermal resistance upon transition to a boiling regime is primarily attributable to the conductive resistance through the saturated wick material being bypassed.  相似文献   

17.
A three-dimensional unsteady model of vapor–liquid two-phase flow and heat transfer in a flat-plate pulsating heat pipe (FP-PHP) is developed and numerically analyzed to study the thermal-hydrodynamic characteristics in two different configurations of FP-PHPs. The thermo-hydrodynamics characteristics under steady unidirectional circulation condition of the studied FP-PHPs are numerically investigated and discussed. The results indicate that the bubbly flow, slug flow and semi-annular/annular flow occur in the FP-PHP under the condition of steady unidirectional circulation, when the adjacent tubes of the FP-PHP become ‘upheaders’ and ‘downcomers’ of working fluid. The periodical oscillations of fluid temperature and vapor volume fraction are observed to be synchronous, while the temperature oscillation amplitude at adiabatic section is larger than that at condenser section but less than that at evaporator section. The increases in the heat load lead to the high temperature level and small integral equivalent thermal resistance of the FP-PHP. Additionally, compared with the traditional FP-PHP with uniform channels, the FP-PHP with micro grooves incorporated in the evaporator section is effective for the heat transfer enhancement and possesses a smaller thermal resistance at high heat loads.  相似文献   

18.
Effects of thermal radiation on solidification heat transfer must be considered inside semitransparent media. This paper investigates coupled heat transfer of solidification and radiation within a two-dimensional rectangular semitransparent medium having gradient index. Solidification process is supposed to happen at some temperature range, and accordingly three zones including liquid-, solid- and mushy-zones exist in phase-change media. In different phase field, parameters of thermophysical property are assumed different and those of radiative property are assumed same. Governing equation includes conduction, radiation and phase-change terms, and radiation and phase-change are treated as source terms in the equation, respectively. A Galerkin finite element method is used to solve energy equation of coupled radiation and phase-change heat transfer. This paper analyzes effect of thermal radiation on phase-change heat transfer and those of refractive index distributions on temperature fields and liquid fraction distributions during radiation–solidification coupled heat transfer. From the results, we can find that refractive index gradient has a major influence on phase-change process and compared with the case of smaller index gradient, bigger gradient can speed up phase-change heat transfer in semitransparent media.  相似文献   

19.
A flow visualisation study of flow boiling of R245fa in silicon multi-microchannels at low mass flux and moderate heat flux has been carried out with a high speed digital camera. The micro-evaporator had 67 channels of length 20 mm, width 223 μm, and height 680 μm while the fin width between adjacent channels was 80 μm. The base heat flux ranged from 2 to 26 W cm?2 for a mass velocity of 100 kg s?1 m?2, resulting in exit vapour qualities ranging from 10% to 70%. In particular, a novel time strip technique was developed to analyse the recorded image sequences and significantly highlight the various phenomena occurring along given channels. Notably, this technique was able to reveal profound details regarding the intermittent dryout mechanism of liquid films trapped between the elongated bubbles and the heated channel walls. The results show that the intermittent dryout of the evaporating liquid film is comprised of four stages with distinct time scales and dynamics: (i) the growth of liquid film thinning perturbations to a critical amplitude causing the rupture of the metastable liquid film, (ii) a dewetting stage involving expanding dry spots leading to a rivulet flow regime, (iii) evaporation of the rivulets leading to full dryout, and (iv) a rewetting stage. This intermittent dryout mechanism appears to explain the many seemingly contradictory heat transfer coefficient trends observed with changes in vapour quality in microchannels, thus resolving an important heat transfer dilemma. Furthermore, since dryout is an undesirable event during the practical application of a microchannel evaporator, it is important to delay or even suppress the initial rupture of the liquid film that leads to dryout. This can be achieved by manufacturing or treating the channel surfaces to be highly wettable with the chosen refrigerant.  相似文献   

20.
Radiative heat transfer in semitransparent phase-change media is of great interest in many engineering fields. Its essence is the transient coupled heat transfer of radiation and conduction along with liquid–solid phase change. The difficulty is to solve radiative heat transfer with the consideration of time–space dependent radiative properties. Especially when the refractive index is considered to vary with space and time in phase change, the problem becomes more complicated. This paper investigates the problem of the variable radiative properties with space and time during phase change in semitransparent media. The phase-change medium is assumed to have solid, mushy and liquid zones, and the solid/mushy and liquid/mushy interfaces are considered to be semitransparent and diffuse reflecting. In different zones, there are different physical property parameters. Phase interfaces are always moving in phase change, while the interfaces of control volumes are fixed. Therefore, the interfaces of control volumes and phase interfaces are not always coincided, which will bring errors into the simulation of radiative transfer in phase-change media. However, the errors can be reduced by dividing the medium into enough sub-layers. As long as the number of sub-layers is big enough, the errors can be limited in a very small range. Then using the multilayer radiative transfer model, we can solve the radiative transfer problem in the semitransparent phase-change medium. Considering time–space dependent refractive index, this paper analyzes coupled radiative and conductive heat transfer in semitransparent solidifying media. The results show that the effects of variable refractive index with time and space on transient coupled heat transfer are significant and could not be neglected inside the semitransparent phase-change medium under some conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号