首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 171 毫秒
1.
密度峰值聚类(DPC)算法是一种新颖的基于密度的聚类算法,其原理简单、运行效率高.但DPC算法的局部密度只考虑了样本之间的距离,忽略了样本所处的环境,导致算法对密度分布不均数据的聚类效果不理想;同时,样本分配过程易产生分配错误连带效应.针对上述问题,提出一种基于相对密度估计和多簇合并的密度峰值聚类(DPC-RD-MCM)算法. DPC-RD-MCM算法结合K近邻和相对密度思想,定义了相对K近邻的局部密度,以降低类簇疏密程度对类簇中心的影响,避免稀疏区域没有类簇中心;重新定义微簇间相似性度量准则,通过多簇合并策略得到最终聚类结果,避免分配错误连带效应.在密度分布不均数据集、复杂形态数据集和UCI数据集上,将DPC-RD-MCM算法与DPC及其改进算法进行对比,实验结果表明:DPC-RD-MCM算法能够在密度分布不均数据上获得十分优异的聚类效果,在复杂形态数据集和UCI数据集的聚类性能上高于对比算法.  相似文献   

2.
密度峰值聚类算法对密集程度不一数据的聚类效果不佳,样本分配过程易产生连带错误.为此,提出一种基于相互邻近度的密度峰值聚类算法.所提算法引入k近邻思想计算局部密度,以此保证密度的相对性.定义综合数据全局和局部特征的样本相互邻近度的度量准则,据此准则,提出一种新的样本分配策略.新的分配策略采用k近邻思想寻找密度峰值,将密度峰值的k个近邻点分配给其对应类簇,对所有已分配数据点寻找相互邻近度最高的未分配数据点,将未分配数据点分配给已分配数据点所在类簇.在合成和UCI数据集上,将所提算法与DPC、DBSCAN、OPTICS、AP、K-Means及DPC的改进算法进行比较,实验结果表明,所提出的算法性能最优.  相似文献   

3.
密度分布不均数据是指类簇间样本分布疏密程度不同的数据.密度峰值聚类(DPC)算法在处理密度分布不均数据时,倾向于在密度较高区域内找到类簇中心,并易将稀疏类簇的样本分配给密集类簇.为避免上述缺陷,提出一种面向密度分布不均数据的近邻优化密度峰值聚类(DPC-NNO)算法.DPC-NNO算法结合逆近邻和k近邻定义新的局部密度,提高稀疏样本的局部密度,使算法能更准确地找到类簇中心;定义分配策略时引入共享近邻,计算样本间相似性,构造相似矩阵,使同一类簇样本联系更紧密,避免错误分配样本.将所提出的DPC-NNO算法与IDPC-FA、DPCSA、FNDPC、FKNN-DPC、DPC算法进行对比,实验结果表明,DPC-NNO算法在处理密度分布不均数据时能获得优异的聚类效果,对于复杂数据集和UCI数据集,DPC-NNO算法的综合性能优于对比算法.  相似文献   

4.
针对密度峰值聚类算法(DPC)在处理维数较高、含噪声及结构复杂数据集时聚类性能不佳问题,提出一种结合K近邻的改进密度峰值聚类算法(IDPCA)。该算法首先给出新的局部密度度量方法来描述每个样本在空间中的分布情况,然后引入核心点的概念并结合K近邻思想设计了全局搜索分配策略,通过不断将核心点的未分配K近邻正确归类以加快聚类速度,进而提出一种基于K近邻加权的统计学习分配策略,利用剩余点的K近邻加权信息来确定其被分配到各局部类的概率,有效提高了聚类质量。实验结果表明,IDPCA算法在21个典型的测试数据集上均有良好的适用性,而在与DPC算法及另外3种典型聚类算法的性能指标对比上,其优势更为明显。  相似文献   

5.
密度峰值聚类算法的局部密度定义未考虑密度分布不均数据类簇间的样本密度差异影响, 易导致误选类簇中心; 其分配策略依据欧氏距离通过密度峰值进行链式分配, 而流形数据通常有较多样本距离其密度峰值较远, 导致大量本应属于同一个类簇的样本被错误分配给其他类簇, 致使聚类精度不高. 鉴于此, 本文提出了一种K近邻和加权相似性的密度峰值聚类算法. 该算法基于样本的K近邻信息重新定义了样本局部密度, 此定义方式可以调节样本局部密度的大小, 能够准确找到密度峰值; 采用样本的共享最近邻及自然最近邻信息定义样本间的相似性, 摒弃了欧氏距离对分配策略的影响, 避免了样本分配策略产生的错误连带效应. 流形及密度分布不均数据集上的对比实验表明, 本文算法能准确找到疏密程度相差较大数据集的密度峰值, 避免了流形数据的分配错误连带效应, 得到了满意的聚类效果; 同时在真实数据集上的聚类效果也十分优秀.  相似文献   

6.
孙林  秦小营  徐久成  薛占熬 《软件学报》2022,33(4):1390-1411
密度峰值聚类(density peak clustering, DPC)是一种简单有效的聚类分析方法.但在实际应用中,对于簇间密度差别大或者簇中存在多密度峰的数据集,DPC很难选择正确的簇中心;同时,DPC中点的分配方法存在多米诺骨牌效应.针对这些问题,提出一种基于K近邻(K-nearest neighbors,KNN)和优化分配策略的密度峰值聚类算法.首先,基于KNN、点的局部密度和边界点确定候选簇中心;定义路径距离以反映候选簇中心之间的相似度,基于路径距离提出密度因子和距离因子来量化候选簇中心作为簇中心的可能性,确定簇中心.然后,为了提升点的分配的准确性,依据共享近邻、高密度最近邻、密度差值和KNN之间距离构建相似度,并给出邻域、相似集和相似域等概念,以协助点的分配;根据相似域和边界点确定初始聚类结果,并基于簇中心获得中间聚类结果.最后,依据中间聚类结果和相似集,从簇中心到簇边界将簇划分为多层,分别设计点的分配策略;对于具体层次中的点,基于相似域和积极域提出积极值以确定点的分配顺序,将点分配给其积极域中占主导地位的簇,获得最终聚类结果.在11个合成数据集和27个真实数据集上进行仿真...  相似文献   

7.
刘奕志  程汝峰  梁永全 《计算机科学》2018,45(2):125-129, 146
基于加权K近邻的密度峰值发现算法(FKNN-DPC)是一种简单、高效的聚类算法,能够自动发现簇中心,并采用加权K近邻的思想快速、准确地完成对非簇中心样本的分配,在各种规模、任意维度、任意形状的数据集上都能得到高质量的聚类结果,但其样本分配策略中的权重仅考虑了样本间的欧氏距离。文中提出了一种基于共享近邻的相似度度量方式,并以此相似度改进样本分配策略,使得样本的分配更符合真实的簇归属情况,从而提高聚类质量。在UCI真实数据集上进行实验,并将所提算法与K-means,DBSCAN,AP,DPC,FKNN-DPC等算法进行对比,验证了其有效性。  相似文献   

8.
周欢欢  郑伯川  张征  张琦 《计算机应用》2022,42(5):1464-1471
针对基于共享最近邻的密度峰聚类算法中的近邻参数需要人为设定的问题,提出了一种基于自适应近邻参数的密度峰聚类算法。首先,利用所提出的近邻参数搜索算法自动获得近邻参数;然后,通过决策图选取聚类中心;最后,根据所提出的代表点分配策略,先分配代表点,后分配非代表点,从而实现所有样本点的聚类。将所提出的算法与基于共享最近邻的快速密度峰搜索聚类(SNN?DPC)、基于密度峰值的聚类(DPC)、近邻传播聚类(AP)、对点排序来确定聚类结构(OPTICS)、基于密度的噪声应用空间聚类(DBSCAN)和K-means这6种算法在合成数据集以及UCI数据集上进行聚类结果对比。实验结果表明,所提出的算法在调整互信息(AMI)、调整兰德系数(ARI)和FM指数(FMI)等评价指标上整体优于其他6种算法。所提算法能自动获得有效的近邻参数,且能较好地分配簇边缘区域的样本点。  相似文献   

9.
密度峰值聚类(density peaks clustering,DPC)算法基于局部密度和相对距离识别簇中心,忽视了样本所处环境对样本点密度的影响,因此不容易发现低密度区域的簇中心;DPC算法采用的单步分配策略的容错性差,一旦一个样本点分配错误,将导致后续一系列样本点分配错误。针对上述问题,提出二阶自然最近邻和多簇合并的密度峰值聚类算法(TNMM-DPC)。首先,引入二阶自然邻居的概念,同时考虑样本点的密度与样本点所处的环境,重新定义了样本点的局部密度,以降低类簇的疏密对类簇中心选择的影响;其次,定义了核心点集来选取初始微簇,依据样本点与微簇间的关联度对样本点进行分配;最后引入了邻居边界点集的概念对相邻的子簇进行合并,得到最终的聚类结果,避免了分配错误连带效应。在人工数据集和UCI数据集上,将TNMM-DPC算法与DPC及其改进算法进行了对比,实验结果表明,TNMM-DPC算法能够解决DPC算法所存在的问题,可以有效聚类人工数据集和UCI数据集。  相似文献   

10.
针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似度指标MS的重新分配,进一步优化了簇类中点集的分配;最后使用dc近邻法优化识别数据集的噪声点。在人工数据集及UCI真实数据集上的实验均可证明,新算法能够在优化噪声识别的同时,提高复杂流形数据集中数据点分配的正确率,并取得比DPC算法、DenPEHC算法、GDPC算法更好的聚类效果。  相似文献   

11.
Wang  Yizhang  Wang  Di  Zhang  Xiaofeng  Pang  Wei  Miao  Chunyan  Tan  Ah-Hwee  Zhou  You 《Neural computing & applications》2020,32(17):13465-13478

Density peak clustering (DPC) is a recently developed density-based clustering algorithm that achieves competitive performance in a non-iterative manner. DPC is capable of effectively handling clusters with single density peak (single center), i.e., based on DPC’s hypothesis, one and only one data point is chosen as the center of any cluster. However, DPC may fail to identify clusters with multiple density peaks (multi-centers) and may not be able to identify natural clusters whose centers have relatively lower local density. To address these limitations, we propose a novel clustering algorithm based on a hierarchical approach, named multi-center density peak clustering (McDPC). Firstly, based on a widely adopted hypothesis that the potential cluster centers are relatively far away from each other. McDPC obtains centers of the initial micro-clusters (named representative data points) whose minimum distance to the other higher-density data points are relatively larger. Secondly, the representative data points are autonomously categorized into different density levels. Finally, McDPC deals with micro-clusters at each level and if necessary, merges the micro-clusters at a specific level into one cluster to identify multi-center clusters. To evaluate the effectiveness of our proposed McDPC algorithm, we conduct experiments on both synthetic and real-world datasets and benchmark the performance of McDPC against other state-of-the-art clustering algorithms. We also apply McDPC to perform image segmentation and facial recognition to further demonstrate its capability in dealing with real-world applications. The experimental results show that our method achieves promising performance.

  相似文献   

12.
机器学习的无监督聚类算法已被广泛应用于各种目标识别任务。基于密度峰值的快速搜索聚类算法(DPC)能快速有效地确定聚类中心点和类个数,但在处理复杂分布形状的数据和高维图像数据时仍存在聚类中心点不容易确定、类数偏少等问题。为了提高其处理复杂高维数据的鲁棒性,文中提出了一种基于学习特征表示的密度峰值快速搜索聚类算法(AE-MDPC)。该算法采用无监督的自动编码器(AutoEncoder)学出数据的最优特征表示,结合能刻画数据全局一致性的流形相似性,提高了同类数据间的紧致性和不同类数据间的分离性,促使潜在类中心点的密度值成为局部最大。在4个人工数据集和4个真实图像数据集上将AE-MDPC与经典的K-means,DBSCAN,DPC算法以及结合了PCA的DPC算法进行比较。实验结果表明,在外部评价指标聚类精度、内部评价指标调整互信息和调整兰德指数上,AE-MDPC的聚类性能优于对比算法,而且提供了更好的可视化性能。总之,基于特征表示学习且结合流形距离的AE-MDPC算法能有效地处理复杂流形数据和高维图像数据。  相似文献   

13.
密度峰值聚类算法(DPC)能够有效地进行非球形数据的聚类,该算法需要输入截断距离,人工截取聚类中心,导致DPC算法的聚类效果有时较差。针对这些问题,提出一种结合密度比和系统演化的密度峰值聚类算法(DS-DPC)。利用自然最近邻搜索得出各样本点的邻居数目,根据密度比思想改进密度计算公式,使其能够反映周围样本的分布情况;对局部密度与相对距离的乘积进行降序排列,根据排序值选出聚类中心,将剩余样本按照DPC算法的分配策略进行聚类,避免了手动选择聚类中心的主观性;利用系统演化方法判断聚类结果是否需要合并或分离。通过在多个数据集上进行实验,并与其他聚类算法进行比较,实验结果表明,该算法具有较好的聚类效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号