首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper examines the sludge characteristics in a submerged membrane bioreactor (MBR) operated on a high strength wastewater from an alcohol distillery. Two membrane bioreactors, each with a 30 μm mesh filter, were investigated with and without addition of powdered activated carbon (PAC). Experiments were conducted with varying organic loading rates ranging from 3.4 to 6.9 kgCOD m−3 day−1 and the specific oxygen uptake rate (SOUR), sludge volume index (SVI), mixed liquor suspended solids (MLSS), particle size and extracellular polymeric substances (EPS) were monitored over a 180 day period. Respirometric experiments did not show enhancement in microbial activity with PAC supplementation. Addition of PAC decreased the SVI thereby perceptibly improving sludge dewaterability. The sludge particle size, which increased with time, appeared to be independent of PAC addition but was influenced by the aeration intensity. PAC also did not affect the sludge EPS concentration; however, the EPS composition, in terms of protein/carbohydrate (polysaccharide) ratio was altered resulting in a high P/C ratio. FTIR analysis of the sludge samples indicated that the functional groups associated with the sludge polysaccharides appear to be involved in its interaction with PAC.  相似文献   

2.
Two parallel membrane bioreactors (2 m3 each) were operated over a period of 2 years. Both pilots were optimised for nitrification, denitrification, and enhanced biological phosphorous elimination, treating identical municipal wastewater under comparable operating conditions. The only constructional difference between the pilots was the position of the denitrification zone (pre-denitrification in pilot 1 and post-denitrification in pilot 2). Despite identical modules and conditions, the two MBRs showed different permeabilities and fouling rates. The differences were not related to the denitrification scheme. In order to find an explanation for the different membrane performances, a one-year investigation was initiated and the membrane performance as well as the operating regime and characteristics of the activated sludge were closely studied. MLSS concentrations, solid retention time, loading rates, and filtration flux were found not to be responsible for the different performance of the submerged modules. These parameters were kept identical in the two pilot plants. Instead, the non-settable fraction of the sludges (soluble and colloidal material, i.e. polysaccharides, proteins and organic colloids) was found to impact fouling and to cause the difference in membrane performance between the two MBR. This fraction was analysed by spectrophotometric and size exclusion chromatography (SEC) methods. In a second step, the origin of these substances was investigated. The results point to microbiologically produced substances such as extracellular polymeric substances (EPS) or soluble microbial products (SMP).  相似文献   

3.
The results of experiments on municipal wastewater primary effluent are presented for a pilot-scale submerged membrane bioreactor (SMBR). The SMBR pilot plant employed an ultrafiltration membrane with a nominal pore size of 0.035 microm and was operated at a constant membrane flux of 30 L/m(2)h. The mixed liquor suspended solids (MLSS) concentration was maintained at 8+/-2 g/L and steady-state fouling rates were determined for 10, 5, 4, 3, and 2-d MCRTs, corresponding to food-to-microorganism (F/M) ratios of 0.34, 0.55, 0.73, 0.84, and 1.41 gCOD/gVSS d, respectively. Membrane fouling rates increased as the F/M was increased. Steady-state membrane fouling rates were correlated with total soluble microbial products (SMP) concentrations. The membrane fouling rates did not correlate well with soluble COD measured on a 0.45 microm membrane filtrate of mixed liquor or with soluble COD rejection (effluent COD/soluble COD).  相似文献   

4.
This work aims to compare biomass structure and performance of a submerged membrane bioreactor (SMBR) and an activated sludge process (ASP) treating the same domestic wastewater. The influence of the separation technique (membrane filtration or settling) and operation at high sludge-retention time (SRT) were investigated. Over the entire range of SRT (10-110 days), the SMBR achieved very good organic removal efficiencies, ranging from 90.8+/-0.2% to 94.2+/-1.6% based on total COD (TCOD), whereas those of ASP were between 87.4+/-1.8% and 90.3+/-0.8%. The contribution of the membrane in the increase in performance was due to total suspended solid retention and also partly due to retention of proteins and polysaccharides of the sludge supernatant. No significant difference in excess sludge production was observed between the two processes operated at the same SRT, but sludge production in SMBR decreased from 0.31 to 0.13 g(VSS)g(COD)(-1) as SRT increased from 9 to 110 days. The difference in sludge characteristics and performance was especially pronounced as SRT increased, resulting in deterioration of sludge settleability and effluent quality of the ASP (filamentous bacteria, increase of protein and polysaccharide release). Membrane filtration induced accumulation of soluble and colloidal proteins and polysaccharides which were progressively degraded in the supernatant as the SRT increased. At similar SRT, no significant difference was observed in the amount of extractable exocellular polymeric substances (bound EPS) from ASP and SMBR sludge. However as the SRT increased, the total specific amount of bound EPS in flocs decreased and the ratio proteins/polysaccharides also decreased. Concomitantly, laser diffraction analysis, microscopic observations, turbidity and DSVI measurement showed that the SRT increase induced significant modifications in sludge morphology in SMBR: decrease in floc size, densification of aggregates, and development of non-flocculating organisms.  相似文献   

5.
Sludge physical characteristics play an important role in the operation of membrane bioreactors (MBR) due to their influence on filtration and their effects on handling of excess sludge. These systems are designed to maintain high solid concentrations, thus limiting sludge production and the related operational costs of the process. In this study, the sludge from a bench scale MBR operated for about 1 year with complete solid retention was investigated to assess its physical and rheological properties. Concentrations of mixed liquor suspended solids (MLSS) up to 24 gTSSL(-1) affected the diluted sludge volume index (DSVI), the capillary suction time (CST), the specific resistance to filtration (SRF) and the compressibility (s). The MBR sludge displayed similar dewatering properties of conventional waste activated sludge, suggesting that the upgrade of wastewater treatment plants with the MBR technology would not affect the behaviour of the dewatering equipment. The apparent viscosity was expressed as a function of the MLSS and the experimental data were interpreted by comparing different models. Ostwald model was chosen, and two equations for viscosity were proposed. The thixotropy of MBR sludge was also evaluated by measuring the reduced hysteresis area (rHa) and relating this parameter to the characteristics of the sludge. The evaluation of energy consumption for mixing evidenced that, under the tested conditions, the increase of solid concentration from 3 to 30 gTSSL(-1) resulted in a limited increase of energy requirements (25-30%).  相似文献   

6.
通过对旁路微氧污泥减量技术中好氧污泥在微氧池中的减量效果及其影响因素的研究,发现污泥减量效果与微氧池的污泥浓度(MLSS)、好氧污泥与厌氧污泥的比例(α)、微氧池的氧化还原电位(ORP)、微氧池的污泥停留时间有关。当微氧池的α=2∶8、MLSS为10 000 mg/L时,减量效果最佳;通过不同MLSS和不同α值两组试验,得出在最佳值时的减量率分别为19.15%和19.61%。低ORP值条件下微氧池污泥颗粒细碎,中位粒径为20.24μm,而好氧污泥的中位粒径为32.18μm。同时,混合液中溶解性大分子有机物含量明显增加。该工艺使污泥有更充分的时间进行内源呼吸和EPS的离解释放,从而实现了污泥减量。  相似文献   

7.
The aim of this study is to compare the effect of constant and variable influent organic loadings on membrane fouling in submerged membrane bioreactors (sMBRs). Two identical lab-scale sMBRs were operated for 162 days at an SRT of 30 days, whereas the influent organic loading was kept constant in one MBR, and varied in another. The microbial characteristics of sludge in terms of MLSS, bound EPS, EPS in the supernatant and particle size distribution were investigated in order to evaluate their respective effect on membrane fouling. During the start-up period, membrane fouling in the MBR fed with variable loadings was more serious than that in the MBR with the constant loading. However, at the stable state, the fouling tendency was clearly reversed with less membrane fouling for variable feed strength. It was shown that the contents of polysaccharides in the supernatant and particle size of the bioflocs were responsible for the observed differences in the fouling tendencies of the two MBRs.  相似文献   

8.
Jeison D  van Lier JB 《Water research》2007,41(17):3868-3879
The long-term operation of two thermophilic anaerobic submerged membrane bioreactors (AnSMBRs) was studied using acidified and partially acidified synthetic wastewaters. In both reactors, cake formation was identified as the key factor governing critical flux. Even though cake formation was observed to be mostly reversible, particle deposition proceeds fast once the critical flux is exceeded. Very little irreversible fouling was observed during long-term operation, irrespective of the substrate. Critical flux values at the end of the reactors operation were 7 and 3L/m(2)h for the AnSMBRs fed with acidified and partially acidified wastewaters, respectively, at a gas superficial velocity of 70m/h. Small particle size was identified as the responsible parameter for the low observed critical flux values. The degree of wastewater acidification significantly affected the physical properties of the sludge, determining the attainable flux. Based on the fluxes observed in this research, the membrane costs would be in the range of 0.5euro/m(3) of treated wastewater. Gas sparging was ineffective in increasing the critical flux values. However, preliminary tests showed that cross-flow operation may be a feasible alternative to reduce particle deposition.  相似文献   

9.
In this study, activated sludge characteristics were studied with regard to membrane fouling in membrane bioreactors (MBRs) for two pilot plants and one full-scale plant treating municipal wastewater. For the full-scale MBR, concentrations of extracellular polymeric substances (EPS) bound to sludge flocs were shown to have seasonal variations from as low as 17mgg(-1) dry matter (DM) in summer up to 51mg(gDM)(-1) in winter, which correlated with an increased occurrence of filamentous bacteria in the colder season. Therefore, it was investigated at pilot-scale MBRs with different sludge retention times (SRTs) whether different EPS contents and corresponding sludge properties influence membrane fouling. Activated sludge from the pilot MBR with low SRT (23d) was found to have worse filterability, settleability and dewaterability. Photometric analysis of EPS extracts as well as LC-OCD measurements showed that it contained significantly higher concentrations of floc-bound EPS than sludge at higher SRT (40d) The formation of fouling layers on the membranes, characterised by SEM-EDX as well as photometric analysis of EPS extracts, was more distinct at lower SRT where concentrations of deposited EPS were 40-fold higher for proteins and 5-fold higher for carbohydrates compared with the membrane at higher SRT. Floc-bound EPS and metals were suggested to play a role in the fouling process at the full-scale MBR and this was confirmed by the pilot-scale study. However, despite the different sludge properties, the permeability of membranes was found to be similar.  相似文献   

10.
Liu L  Zhao C  Yang F 《Water research》2012,46(6):1969-1978
Prepared by coating TiO2/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO2/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO2 enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.  相似文献   

11.
This paper presents the results of 195 days of pilot-scale submerged membrane bioreactor (SMBR) experiments on settled municipal wastewater. Short-term and long-term thickening experiments were performed at a constant membrane flux of 30L/(m(2)h) to determine the impact of the following mixed liquor properties: colloidal material, soluble COD, soluble microbial products, extracellular polymeric substances, and viscosity along with aeration intensity on membrane fouling at high mixed liquor suspended solids (MLSS) concentrations. The normalized permeability declined with increasing MLSS concentrations in all experiments and increasing the coarse bubble aeration intensity increased the permeability at a given MLSS concentration. Using a dynamic approach, this work demonstrates the importance of mixed liquor viscosity, which impacts the efficacy of the coarse bubble aeration, in sustaining membrane permeability. Over an extended thickening time period, a small increase in MLSS concentration and mixed liquor viscosity becomes more prevalent and leads to greater permeability decline at a given MLSS concentration.  相似文献   

12.
Lee SM  Jung JY  Chung YC 《Water research》2001,35(2):471-477
A two-phase anaerobic reactor system with a submerged membrane in the acidogenic reactor was designed for the enhancement of organic acid conversion and methane recovery. A submerged membrane system in a two-phase anaerobic reactor was tested to increase the sludge retention time (SRT) of acidogen and to enhance the solid separation. The pilot plant experiment was performed for piggery wastewater treatment for a year. The membrane material used was mixed esters of cellulose of 0.5 micron pore size. COD removal efficiency was 80% and the methane production showed 0.32 m3/kg COD removed for the submerged membrane system in the anaerobic digester. As the cake resistance of the membrane caused a serious problem, a stainless-steel prefilter and air backwashing methods were applied to minimize the cake resistance effectively. Among the tested prefilters, the 63 microns pore prefilter showed the best performance for reducing cake resistance and a successful long-term operation. By cleaning with alkali first and acidic solutions later, the permeate flux decreased by long-term operation was recovered to 89% of that with a new membrane.  相似文献   

13.
Jochen Henkel 《Water research》2009,43(6):1711-8793
Mass transfer coefficients (kLa) were studied in two pilot scale membrane bioreactors (MBR) with different setup configurations treating 200 L/h of synthetic greywater with mixed liquor suspended solids' (MLSS) concentrations ranging from 4.7 to 19.5 g/L. Besides the MLSS concentration, mixed liquor volatile suspended solids (MLVSS), total solids (TS), volatile solids (VS), chemical oxygen demand (COD) and anionic surfactants of the sludge were measured. Although the pilot plants differed essentially in their configurations and aeration systems, similar α-factors at the same MLSS concentration could be determined. A comparison of the results to the published values of other authors showed that not the MLSS concentration but rather the MLVSS concentration seems to be the decisive parameter which influences the oxygen transfer in activated sludge systems operating at a high sludge retention time (SRT).  相似文献   

14.
Shang C  Wong HM  Chen G 《Water research》2005,39(17):4211-4219
A membrane bioreactor (MBR) may serve as a pre-disinfection or disinfection unit, in addition to its solid/liquid separation and biological conversion functions, to produce sewage effluent of high quality. This bench-scale pilot study focuses on investigating the performance of a submerged MBR in pathogen removal and the factors affecting the removal, using a 0.4-microm hollow-fiber membrane module submerged in an aeration tank and bacteriophage MS-2 as the indicator organism. Removal of the MS-2 phage was found to be contributed by physical filtration by the membrane itself, biomass activity in the aeration tank and bio-filtration achieved by the biofilm developed on the membrane surface. The membrane alone gave poor virus removal (0.4+/-0.1 log) but the overall removal increased substantially with the presence of biomass and the membrane-surface-attached biofilm. The contributions of the suspended biomass and attached biofilm to the phage removal are dependent on the inter-related parameters including the concentration of mixed liquor suspended solids (MLSS), the sludge retention time (SRT) and the food to mass (F/M) ratio. The correlations between effluent flux/trans-membrane pressure and virus removal give evidence that phage removal in the MBR is most likely susceptible to both biological and physical factors including the quantity and property of the biomass and the biofilm and the membrane pore size reduction.  相似文献   

15.
在对污水处理厂历史监测数据收集、整理和分析的基础上,利用GPS-X软件,建立并校正了污水处理厂工艺模型,同时探索了校正方法。研究结果表明,自养菌最大比生长速率作为污水特征参数,需通过拟合出水的NH3-N浓度变化进行校准。污泥浓度的拟合是一个非常重要的步骤,影响污泥浓度拟合的参数包括进水特征参数(VSS/TSS值、总COD中颗粒惰性组分的占比)、剩余污泥排放量、初沉污泥排放量。  相似文献   

16.
Drinking water denitrification by a membrane bio-reactor   总被引:8,自引:0,他引:8  
Drinking water denitrification performance of a bench scale membrane bio-reactor (MBR) was investigated as function of hydraulic and biological parameters. The reactor was a stirred tank and operated both in batch and continuous mode. The mixed denitrifying culture used in the batch mode tests was derived from the mixed liquor of a wastewater treatment plant in Erzincan province in Turkey. But the culture used in the continuous mode tests was that obtained from the batch mode tests at the end of the denitrification process. The nitrate contaminated water treated was separated from the mixed liquor suspended solids (MLSS) containing active mixed denitrifying culture and other organic substances by a membrane of 0.2 microm average pore diameter. The results indicated that the use of a membrane module eliminated the need for additional post treatment processes for the removal of MLSS from the product water. Concentration of nitrite and that of MLSS in the membrane effluent was below the detectable limits. Optimum carbon to nitrogen (C/N) ratio was found to be 2.2 in batch mode tests. Depending on the process conditions, it was possible to obtain denitrification capacities based on the reactor effluent and membrane effluent up to 0.18kgm(-3)day(-1) and 2.44 kg m(-2) day2(-1) NO(3-)-N, respectively. The variation of the removal capacity with reactor dilution rate and membrane permeate flux was the same for two different degrees of [MLSS]0/[NO3-N]0 (mass) ratios of 25.15 and 49.33. The present MBR was able to produce a drinking water with NO(3-)-N concentration of less than 4 ppm from a water with NO3-N contamination level of 367 ppm equivalent to a NO(3-)-N load of 0.310 kgm(-3) day(-1). The results showed that MBR system used was able to offer NO(3-)-N removals of up to 98.5%. It was found that the membrane limiting permeate flux increased with increasing MLSS concentration.  相似文献   

17.
Ozaki N  Yamamoto K 《Water research》2001,35(13):3137-3146
Membrane filtration technology for application of wastewater treatment has been developing recently. In the application to wastewater treatment, it is major concern to remove cake layer on membrane surface effectively with crossflow shear stress. Hydraulic effect of sludge accumulation process on membrane surface in bubble and non-bubble driven crossflow filtration was studied. Maximum sludge accumulation. sludge accumulation rate, and lag phase were introduced to describe sludge accumulation process, and the effects of hydraulic conditions were clarified experimentally. Maximum sludge accumulation and sludge accumulation rate were dependent on aeration intensity, and were less depend on flow channel width and MLSS concentration. Their tendencies were explained by shear stress. Shear stress was thought to be the major hydraulic factor that influences them. Lag phase was dependent on aeration intensity, flow channel width, and MLSS concentration. A non-dimensional equation was proposed to explain dependencies of flow channel width based on consideration of hydraulic behavior of MLSS particles and shear stress.  相似文献   

18.
Recently, a new type of wastewater treatment system became the focus of scientific research, the mesh filter activated sludge system. It is a modification of the membrane bioreactor where a membrane filtration process serves to separate the sludge from the purified effluent. The difference is that a mesh filter is used instead of the membrane. Due to the much larger pore size of the mesh, the effluent is not of the same excellent quality as with membrane bioreactors. Nevertheless, it still resembles the quality of the now most widely used standard treatment system, where settling tanks are used to retain the activated sludge. At the same time, the new system features all the other advantages of membrane bioreactors including elevated sludge concentrations resulting in decreased volumina of basins and complete substitution of the settling tank. Therefore, this process presents a potential future alternative where a small footprint of the plant is required. However, so far only a few preliminary studies on this innovative process type have been done. In this paper, the effects of suspended solids concentration, flux rate as well as aeration rate on the effluent quality are discussed. Furthermore, the characteristic of the sludge floc was identified as a factor of vital importance. Therefore, another influencing parameter, the food to microorganism (F/M) ratio, which is known to have a significant effect on floc characteristics, was studied. The main result demonstrated that the process was very effective under most of the operation conditions. The suspended solids concentration in the effluent was below 12 mg l(-1), the average COD in the effluent was between 24 and 45 mg l(-1) and the BOD(5) was lower than 5 mg l(-1). High flux rates of up to 150 l m(-2)h(-1) were also achieved.  相似文献   

19.
Fouling is a major limitation for the application of membrane bioreactors (MBRs) in municipal wastewater treatment; the critical flux concept represents a valid tool for process optimisation in planning fouling control strategies. The paper presents the results obtained on a large pilot MBR equipped with a plate-and-frame ultrafiltration membrane. The experimental assessment of flux criticality was carried out by flux-stepping tests showing the positive impact of liquid temperature on the value of the critical threshold. The reliability of short-term tests was then verified over a long period by determining the time of sustainability, t(sust), of six different sub-critical fluxes ranging between 17 and 30Lm(-2)h(-1). An exponential fitting was observed in terms of fouling rate both before and after t(sust), though fouling after t(sust) is likely to be ascribed not only to cake formation. Finally, a new mathematical formulation was proposed according to the local flux approach to model the sub-critical TMP transients. The model involves both bound and free forms of EPS and, once experimentally calibrated, it provided a fair prediction of the TMP jump.  相似文献   

20.
This study evaluated the ability of a chairside filtration system to remove particulate-based mercury (Hg) from dental-unit wastewater. Prototypes of the chairside filtration system were designed and fabricated using reusable filter chambers with disposable filter elements. The system was installed in five dental operatories utilizing filter elements with nominal pore sizes of 50 microm, 15 microm, 1 microm, 0.5 microm, or with no system installed (control). Daily chairside wastewater samples were collected on ten consecutive days from each room and brought to the laboratory for processing. After processing the wastewater samples, Hg concentrations were determined with cold vapor atomic absorption spectrometry (USEPA method 7470A). Filter systems were exchanged after ten samples were collected so that all five of the configurations were evaluated in each room (with assignment order balanced by a Latin Square). The numbers of surfaces of amalgam placed and removed per day were tracked in each room. In part two, new filter systems with the 0.5 microm filter elements were installed in the five dental operatories and vacuum levels at the high-velocity evacuation cannula tip were measured with a vacuum gauge. In part three of the study, the chairside filtration system utilizing 0.5 microm and 15 microm filter elements was evaluated utilizing the ISO 11143 testing protocol, a laboratory test of amalgam separator efficiency utilizing amalgam samples of known particle size distribution. Mean Hg per chair per day (no filter installed) was 1087.38 mg (SD = 993.92 mg). Mean Hg per chair per day for the 50 microm, 15 microm, 1 microm, 0.5 microm filter configurations was 79.13 mg (SD = 71.40 mg), 23.55 mg (SD = 23.25 mg), 17.68 mg (SD = 17.35 mg), and 4.25 mg (SD = 6.35 mg), respectively (n = 50 for all groups). Calculated removal efficiencies from the clinical samples were 92.7%, 97.8%, 98.4%, and 99.6%, respectively. ANCOVA on data from the four filter groups, with amalgam-surfaces-removed included as a significant covariate, was statistically significant (P < 0.0001). Tukey post-hoc comparisons (P < or = 0.05) indicated that the 50 microm filter removed less mercury than all other filters and the 0.5 microm removed more mercury than the 50 microm and 15 microm filters. Chairside vacuum measured on chairs with the 0.5 microm filters installed were minimally affected at the time of installation, and then gradually diminished as the filters became loaded with debris. The 0.5 microm configuration passed the ISO 11143 testing protocol at 96.8% efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号