首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A series of high-response and fast-response/recovery n-butanol gas sensors was fabricated by adding ZnO to In2O3 in varying molar ratios to form ZnO-In2O3 nanocomposites via a facile co-precipitation hydrothermal method. Morphological characterizations revealed that the shape of pure In2O3 was changed from irregular cubes into irregular nanoparticles, 30–50?nm in size, with the addition of ZnO. Compared with the pure In2O3 gas sensor, the ZnO-In2O3 gas sensor exhibits superior n-butanol sensing performance. With the introduction of ZnO, the response of the sensor to n-butanol was improved from 17 to 99.5 at 180?°C for a [Zn]:[In] molar ratio of 1:1. In addition, the ZnO-In2O3 gas sensors show a reduced optimal working temperature, excellent selectivity to n-butanol, and good repeatability. The response of the ZnO-enhanced In2O3-based sensors showed a strong linear relationship with the n-butanol gas concentration, allowing for the quantitative detection of n-butanol gas.  相似文献   

2.
《Ceramics International》2015,41(8):9823-9827
In2O3 nanorods decorated with Cr2O3 nanoparticles were synthesized by thermal evaporation of In2S3 powder in an oxidizing atmosphere followed by solvothermal deposition of Cr2O3 and their ethanol gas sensing properties were examined. The pristine and Cr2O3-decorated In2O3 nanorods exhibited responses of ~524% and ~1053%, respectively, to 500-ppm ethanol at 200 °C. The Cr2O3-decorated In2O3 nanorod sensor showed stronger electrical response to ethanol gas at 200 °C than the pristine In2O3 nanorod counterpart. The former also showed faster response and recovery than the latter. The pristine and Cr2O3-decorated In2O3 nanorod sensors showed the strongest response to ethanol gas at 250 and 200 °C, respectively. The Cr2O3-decorated In2O3 nanorod sensor showed selectivity for ethanol gas over other reducing gases. The underlying mechanism for the enhanced response, sensing speed and selectivity of the Cr2O3-decorated In2O3 nanorod sensor for ethanol gas is discussed.  相似文献   

3.
《Ceramics International》2023,49(18):30170-30177
Hydrothermally synthesized In2O3 nanocubes were sensitized with Au and gas sensing performance is analyzed. The Au sensitization was done using sputtering and gas sensing performance is studied as function of different sputtering time. The catalytic activity of Au particles on In2O3 films increases with the sputtering time but acquires saturation at high sputtering time. The Au sensitization with sputtering time of 5 s was found to show improved sensor response (Rg/Ra) of 8435 than the sensor response of 6876 for pure In2O3 film. The improved sensor response was attributed to the catalytic activity of Au particles on the In2O3 film surface. In addition, Au sensitized In2O3 also demonstrates the sensor response at 60 ppb.  相似文献   

4.
《Ceramics International》2015,41(6):7687-7692
Oil soluble In2O3 nanoparticles were synthesized via the decomposition of indium acetylacetonate in organic solution. In2O3 nanoparticle thin films were prepared by spin-coating the dichloromethane solution of In2O3 on SiO2/Si substrates and annealing at various temperatures. X-ray diffraction and scanning electron microscopy show that the In2O3 nanoparticles are spherical and the quality of thin film surface varies with annealing temperature and time. Field-effect transistor devices of the In2O3 nanoparticles were fabricated and their electronic characteristics were studied in air and nitrogen. The semiconducting properties can be tuned by modifying exposing time of the In2O3-based devices in air. The electron mobility and on–off current ratio have a dramatic change in the starting stage exposed in air, suggesting the device is sensitive to air due to the presence of nanostructures in the In2O3 thin films. The results suggest that the In2O3 thin film device may find applications in gas sensors.  相似文献   

5.
《Ceramics International》2021,47(20):28411-28418
The limiting temperature of an In2O3 thin film sensor is much lower than its melting point. Herein, the failure modes of In2O3 thin films at high temperatures, including sublimation and changes in composition, have been studied. The edge and surface layer sublimation rates increased dramatically at 1350 °C, indicating that it is the limiting temperature of no-protection In2O3 films. In addition, oxygen atoms will escape from In2O3 thin films at high temperatures, forming oxygen vacancies. As the main current carrier type in In2O3, the increasing number of oxygen vacancies affects the resistance of In2O3 thin film sensors. To solve these problems and promote the high temperature performance of In2O3 thin films, protection methods based on Al2O3 and ZrO2 layers have been investigated. The ZrO2 protective layer alleviated the serious considerable sublimation of In2O3 thin films at high temperatures, and the Al2O3 protective layer was beneficial for reduction the escape of oxygen atoms. Finally, different protection layers were evaluated by in-situ resistivity measurements of In2O3 thin films at high temperatures. The resistance of the In2O3 thin film resistor with a protective multilayer consisting of Al2O3 and ZrO2 remained stable at 1360 °C, verifying the protection method effectively increased the thermal stability of In2O3 thin films.  相似文献   

6.
《Ceramics International》2022,48(9):12291-12298
Nanomaterials offer a wide range of applications in environmental nanotechnology. Hazardous pollutants in the environment are needed to be detected and controlled effectively to avoid human health risks. In this paper, we described the fine-controlled growth of In2O3 nanoparticles embedded on GO nanosheets by a facile precipitation method. The In2O3@GO nanocomposites exhibited outstanding gas sensing performance as compared with pure In2O3 nanoparticles towards NO2. At 225 °C, the sensor displayed high selectivity, best response (78) to 40 ppm NO2, quick response, and recovery times of 106s/42s. The improved sensing performances of the nanocomposite were attributed to large surface area, high gas adsorption-desorption capability, and the formation of p-n heterojunctions between In2O3 nanoparticles and GO nanosheets. The excellent gas detecting activities validate In2O3@GO nanocomposites as a promising candidate in the NO2 gas sensor industry.  相似文献   

7.
Single crystal In2O3 shows promise as a photoanode for the decomposition of water. Because of various difficulties in the preparation of the single crystal material, two simple techniques were developed for the preparation of polycrystalline In2O3 anodes. One method involves the thermal decomposition of the nitrate while the other utilizes the chemical vapour deposition technique. Voltammograms and photoresponse spectra of these anodes are compared to the single crystal material. Among other observations, it is noted that the quantum efficiencies of the thermally decomposed films are comparable to the single crystal material. It is also shown that the on-set potential can be shifted to more negative values by forming the mixed oxide In2O3/Y2O3.  相似文献   

8.
In this research, hydrothermal‐calcination route was applied to synthesize In2O3 nanoparticles for gas sensor application. Hydrothermal synthesis with duration of 5 h at 180°C resulted in In(OH)3 nanorods. Then, in the calcination step, considering controlled rate of heating and temperature, In2O3 nanoparticles with rough surfaces were obtained. In the next step, these nanoparticles were deposited by low frequency AC electrophoretic deposition between the interdigitated electrodes to fabricate gas sensor. Deposition in the frequency of 10 kHz resulted in the chained nanoparticles in the interelectrode space. At the end, gas sensitivity measurements were conducted at 150°C–300°C and revealed that fabricated sensor had fast response and recovery times to NO2 gas.  相似文献   

9.
《Ceramics International》2017,43(10):7942-7947
Arrayed In2O3 nanosheets were synthesized directly via a two-step solution approach on an Al2O3 ceramic tube. Their morphology and structure were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy, and scanning electron microscopy (SEM). The results reveal that the length of each nanosheet is about 1 µm, the width of the bottom of nanosheet is about 200 nm. Importantly, the In2O3 nanosheets with large specific surface area possess highly sensing performance for ethanol detection. The response value to 100 ppm ethanol is about 45 at an operating temperature of 280 °C, and the response and recovery time are extremely short. It is expected that the directly grown In2O3 nanosheets with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting ethanol.  相似文献   

10.
CuO/In2O3 core–shell nanorods were fabricated using thermal evaporation and radio frequency magnetron sputtering. X-ray diffraction and transmission electron microscopy showed that both the cores and shells were crystalline. The multiple networked CuO/In2O3 core–shell nanorod sensors showed responses of 382–804%, response times of 36–54 s and recovery times of 144–154 s at ethanol (C2H5OH) concentrations ranging from 50 to 250 ppm at 300 °C. These responses were 2.3–2.8 times higher than those of the pristine CuO nanorod sensor over the same C2H5OH concentration range. The origin of the enhanced ethanol sensing properties of the core–shell nanorod sensor is discussed.  相似文献   

11.
We have prepared multiwalled carbon nanotube (MWCNT)/In2O3 composites using a simple impregnation method. The precursor compound indium(III) chloride (InCl3) was used to cover the surface of MWCNTs and distilled water was used as solvent. The applied mass ratio was 4:1 (In2O3/MWCNT), and during the calcination process different temperatures (300, 350 and 400 °C) were investigated. The produced materials were characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, transmission and scanning electron microscopy, and a thermogravimetric analysis was executed also. The average thickness of the produced surface layer and the average sizes of the In2O3 particles were calculated with the Scherrer formula and the ImageJ-program. The results show that the heat treatment temperature affected the characteristic morphology and the crystal structure of the as-prepared composite. These multiwalled carbon nanotube-based composites are promising candidates as gas sensors and catalyst.  相似文献   

12.
Nanostructured polycrystalline films in the In2O3–SnO2 and In2O3–ZrO2 systems, which are of interest for use in sensors for determining the content of strongly oxidizing media (such as ozone) and in electrode materials, are grown by the hydropyrolytic method from metal nitrates and through vacuum deposition of metals. Chemically interacting nanocomposites based on indium oxide are studied. The surface morphology of films and the structure of polycrystalline grains are investigated using electron microscopy and X-ray diffractometry.  相似文献   

13.
In a search for new thermoelectric materials, indium oxide (In2O3) was selected as a candidate for high-temperature thermoelectric oxide materials due to its intrinsically low thermal conductivity (<2 W/mK) and ZT values around 0.05. However, low electrical conductivity is a factor limiting the thermoelectric performance of this oxide, and was addressed in this study by Mo doping. It was found that Mo is soluble in In2O3 but forms secondary phases at a fraction near x = 0.06 and higher. Mo was found to be unsuitable for heavy n-type doping necessary to improve the thermoelectric performance of the oxide to the desired level (ZT = 1). However, the experimental data enabled us to analyze the electrical conductivity behavior and the Seebeck coefficient of doped In2O3 with different carrier concentrations, predicting a theoretically achievable maximum power factor value of 1.77 × 10?3 W/mK2 at an optimum carrier concentration. This estimation predicts the highest ZT value of 0.75 at 1073 K, assuming the lattice thermal conductivity value remaining at an amorphous level.  相似文献   

14.
《Ceramics International》2020,46(12):20385-20394
Mesoporous Fe-doped In2O3 nanorods derived from metal-organic frameworks (In/Fe-MIL-68s) were synthesized for NO2 detection. The morphologies, structures and NO2 gas-sensing performances of the Fe–In2O3 nanorods were systematically investigated. Texture characterizations demonstrate that the as-prepared Fe–In2O3 nanorods show rich porous structures, high specific surface areas and reduced grain sizes. Gas-sensing measurements display that the Fe–In2O3 nanorods derived from In/Fe-MIL-68s with the Fe(Ⅲ) content of 5 mol.% (Fe(5)-In2O3) exhibit high response (82) and short response/recovery time (70/65 s) towards 2 ppm NO2 at 80 °C compared with their counterparts. Besides, superior selectivity and good stability are observed. The sensing mechanism studies reveal that the improved gas-sensing performances are attributed to the decrease in the gran size, the formation of rich oxygen vacancies and band gaps narrowing caused by Fe(Ⅲ) doping. Therefore, this work indicates that the Fe–In2O3 nanorods derived from metal-organic frameworks precursors can be a promising candidate for NO2 detection.  相似文献   

15.
A novel synthesis of In2O3 porous microcolumnar structures (MCs) by a self-sacrificial template route was carried out using MIL-68. Using a modified calcination strategy, the samples could maintain the original metal organic frame work (MOF) morphology with a high gas accessibility after a slow decomposition of organic ligands. Pt nanoparticles (NPs) were loaded on the samples before or after the MOF calcination, leading to different contact states of the Pt NPs and In2O3 matrix. The gas sensing properties of the samples were systematically investigated using a dynamic testing system. Particularly, sample Pt/In2O3 MCs-1 exhibited a superior NO2 sensing performance near room temperature (Rg/Ra?=?44.9?at 1 part-per-million and 5.2?at 100 parts-per-billion (ppb)). The sensor resistance could recover to its baseline even at 40?°C after purging with air without any additional treatment. This can be attributed to the chemical sensitisation of the Pt NPs as well as large contents of pores and channels for gas diffusion. The introduction of humidity in the gas mixture could remarkably decrease the sensor response and recovery times owing to the ‘wet’ NO2 adsorption mechanism. This study demonstrated a novel synthesis route of Pt-loaded In2O3 porous columnar structures and its potential applications in near-room-temperature detection of ppb-level NO2.  相似文献   

16.
Highly active two-dimensional (2D) nanocomposites, integrating the unique merits of individual components and synergistic effects of composites, have been recently receiving attention for gas sensing. In this work, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites were synthesized using In2O3 nanocubes and layered Ti3C2Tx MXene via a facile hydrothermal self-assembly method. Characterization results indicated that the In2O3 nanocubes with sizes approximately 20–130 nm in width were well dispersed on the surface of layered Ti3C2Tx MXene to form numerous heterostructure interfaces. Based on the synergistic effects of electronic properties and gas-adsorption capabilities, In2O3 nanocubes/Ti3C2Tx MXene nanocomposites exhibited high response (29.6%–5 ppm) and prominent selectivity to methanol at room temperature. Meanwhile, the low detection concentration could be reduced to ppm-level, the response/recovery times are shortened to 6.5/3.5 s, excellent linearity and outstanding repeatability. The strategy of compositing layered MXene with metal oxide semiconductor provides a novel pathway for the future development of room temperature gas sensors.  相似文献   

17.
《Ceramics International》2022,48(8):10562-10573
To realize a synergistic effect between composition engineering and morphology modulation, PdO–Fe2O3 heterojunction architectures with various morphologies were fabricated by facile hydrothermal and solution impregnation methods. Afterwards, gas sensing devices were constructed from the as-prepared PdO–Fe2O3 composites, and their parameters were systematically investigated. The obtained results revealed that all PdO–Fe2O3 sensors exhibited excellent selectivity properties and high responses to target gases. Importantly, an urchin-like PdO–Fe2O3 sensing device produced the largest response of 75 to 50 ppm hydrogen sulfide at a PdO concentration of 4 wt%, which was approximately four times greater than that of a spherical PdO–Fe2O3 sensor. The urchin-like sensor was also characterized by the highest response recovery efficiency, water resistance, and long-term stability. Furthermore, the sensing mechanism of the fabricated PdO–Fe2O3 composite-based gas sensors was discussed comprehensively.  相似文献   

18.
In2O3 nanoparticles are coated on the surfaces of single-walled carbon nanotubes (SWCNTs) by a successive ionic layer adsorption and reaction process. The thickness of the In2O3 nanoparticle film is tuned by controlling the number of coating cycles. The electric field around the In2O3-coated SWCNTs is compared with that of pristine SWCNTs. Field enhancement of the In2O3-coated SWCNTs is confirmed by conductive atomic force microscopy at low electric field (contact mode: 1 V to −1 V) and also field emission (FE) analysis at high electric field (0–4.2 V/μm). The uniformity and emission stability are also measured via FE analysis. Near infrared and X-ray photoemission spectroscopy data are suggested to explain the charge transfer, bandgap change between the In2O3 nanoparticles and SWCNTs, and the electric field enhancements in the In2O3-coated SWCNTs at both low and high electric field.  相似文献   

19.
《Ceramics International》2022,48(17):24213-24233
In recent years, gas sensors fabricated from gallium oxide (Ga2O3) materials have aroused intense research interest due to the superior material properties of large dielectric constant, good thermal and chemical stability, excellent electrical properties, and good gas sensing. Over the past decades, Ga2O3-based gas sensors experienced rapid development. The long-term stable Ga2O3-based gas sensors for detecting oxygen and carbon monoxide have been commercialized and renowned with extremely good gas sensing characteristics. Recent pioneering studies also exhibit that the Ga2O3-based gas sensors possess great potentials in applications of detecting nitrogen oxides, hydrogen, volatile organic compounds and ammonia gases. This article presents recent advances in gas sensing mechanism, device performance parameters, influence factors, and applications of Ga2O3-based gas sensors. The impacts of influence factors, doping, material structure and device structure on the performance of gas sensors are discussed in detail. Finally, a brief overview of challenges and opportunities for the Ga2O3-based gas sensors is presented.  相似文献   

20.
《Ceramics International》2022,48(5):6600-6607
Ti3C2Tx, as a novel two-dimensional material, displays promising prospects in NH3 detection at room temperature. However, the NH3 detection limit of pristine Ti3C2Tx is still a major research concern. Therefore, it is important to explore new Ti3C2Tx-based nanocomposites for better NH3-sensing performance. In the present experiment, Ti3C2Tx/In2O3 nanocomposites were successfully synthesized by ultrasonication and characterized by XRD, FESEM, TEM, XPS, and BET. The optimal Ti3C2Tx/In2O3-based sensor had a high response of 63.8% (30.4 times higher than that of pristine Ti3C2Tx) to 30 ppm NH3 at room temperature. In addition, the optimal Ti3C2Tx/In2O3-based sensor had stable repeatability, excellent selectivity, and long-term stability, while exhibiting excellent potential for NH3 detection at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号