首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 532 毫秒
1.
《Ceramics International》2015,41(4):5894-5902
The biodegradable ceramic scaffolds with desirable pore size, porosity and mechanical properties play a crucial role in bone tissue engineering and bone transplantation. A novel porous β-dicalcium silicate (β-Ca2SiO4) ceramic scaffold was prepared by sintering the green body consisting of CaCO3 and SiO2 at 1300 °C, which generated interconnected pore network with proper pore size of about 300 μm and high compressive strength (28.13±5.37–10.36±0.83 MPa) following the porosity from 53.54±5.37% to 71.44±0.83%. Porous β-Ca2SiO4 ceramic scaffolds displayed a good biocompatibility, since human osteoblast-like MG-63 cells and goat bone mesenchymal stem cells (BMSCs) proliferated continuously on the scaffolds after 7 d culture. The porous β-Ca2SiO4 ceramic scaffolds revealed well apatite-forming ability when incubated in the simulated body fluid (SBF). According to the histological test, the degradation of porous β-Ca2SiO4 ceramic scaffolds and the new bone tissue generation in vivo were observed following 9 weeks implantation in nude mice. These results suggested that the porous β-Ca2SiO4 ceramic scaffolds could be potentially applied in bone tissue engineering.  相似文献   

2.
A new method to enhance the flexural strength of porous β-tricalcium phosphate (β-TCP) scaffolds was developed. This new method provides better control over the microstructures of the scaffolds and enhances the scaffolds’ mechanical properties. Using this technique, we were able to produce scaffolds with mechanical and structural properties that cannot be attained by either the polymer sponge or slip-casting methods alone or by simply combining the polymer sponge and slip-casting methods. The prepared scaffolds had an open, uniform, interconnected porous structure with a bimodal pore size of 100.0–300.0 μm. The flexural strength of the bimodal porous β-TCP scaffold sintered at 1200 °C was 56.2 MPa and had porosity of 61.4 vol%. The scaffolds obtained provide good mechanical support while maintaining bioactivity, and hence, these bioscaffolds hold promise for applications in hard-tissue engineering.  相似文献   

3.
Porous alumina ceramics having unidirectionally aligned cylindrical pores were prepared by extrusion method and compared with porous ceramics having randomly distributed pores prepared by conventional method, and their gas permeability and mechanical properties were investigated. SEM micrographs of the porous alumina ceramics prepared by the extrusion method using nylon fibers as the pore former showed excellent orientation of cylindrical pores. The bending strength and Weibull modulus of the extruded porous alumina ceramics with 39% porosity were 156 MPa and 17, respectively. These mechanical properties of extruded samples were higher than those of the conventional porous alumina ceramics. The strength decreased from 156 to 106 MPa with increasing pore size from 8.5 to 38 μm. The gas permeability of the extrusion samples is higher than that of the conventional samples and increased with increasing of porosity and pore size.  相似文献   

4.
《Ceramics International》2016,42(13):14894-14902
The emerging porous Y2SiO5 ceramic is regarded as a promising candidate of thermal insulator owing to its very low thermal conductivity. However, recent works on porous Y2SiO5 are confronted with severe problems such as large linear shrinkage (18.51–20.8%), low porosity (47.74–62%) and low strength (24.45–16.51 MPa) at high sintering temperatures (1450–1500 °C). In this work, highly porous Y2SiO5 ceramic with low shrinkage and excellent high-temperature strength was fabricated by in-situ foam-gelcasting method at 1550 °C. The as-prepared sample has unique multiple pore structures, low linear shrinkages of 6.3–4.5%, controllable high porosities of 60.7–88.4%, high compressive strengths of 38.2–0.90 MPa, and low thermal conductivities of 0.126–0.513 W/(m K) (porosity: 87.1–60.2%). The effects of relative density on relative strength, as well as porosity on thermal conductivity were quantitatively discussed. The present results indicate that porous Y2SiO5 is the potential high-temperature thermal insulation material of light weight, low thermal conductivity, and high strength.  相似文献   

5.
《Ceramics International》2016,42(8):9653-9659
Silicate-bonded porous SiC scaffolds with lamellar structures were prepared by freeze casting and liquid-phase sintering. It was found that the viscosity and solidification velocity of SiC water-based slurries with 30 vol% solid loading decreased with increasing Al2O3–MgO (AM) addition. As the AM content increased from 10 to 30 wt%, the lamellae of the sintered scaffolds became denser and the porosity decreased from 69±0.5% to 62±0.5%, while the compressive strength improved from 25±2 to 51±2 MPa. The dynamics of pressureless infiltration for an Al–12 Si–10 Mg alloy on the SiC porous scaffold was measured and the composites with lamellar-interpenetrated structures were successfully produced. Both the compressive strength and the elastic modulus of the composites increased with increasing AM content. The maximum strength reached 952±24 MPa and the highest elastic modulus about 156 GPa, respectively, in a longitudinal direction, increasing about 32% and 11% as compared with those of the composites without AM.  相似文献   

6.
《Ceramics International》2017,43(12):8743-8754
The strength integrity and chemical stability of porous alumina ceramics operating under extreme service conditions are of major importance in understanding their service behavior if they are to stand the test of time. In the present study, the effect of porosity and different pore former type on the mechanical strength and corrosion resistance properties of porous alumina ceramics have been studied. Given the potential of agricultural wastes as pore-forming agents (PFAs), a series of porous alumina ceramics (Al2O3-xPFA; x=5, 10, 15 and 20 wt%) were successfully prepared from rice husk (RH) and sugarcane bagasse (SCB) through the powder metallurgy technique. Experimental results showed that the porosity (44–67%) and the pore size (70–178 µm) of porous alumina samples maintained a linear relationship with the PFA loading. Comprehensive mechanical strength characterization of the porous alumina samples was conducted not just as a function of porosity but also as a function of the different PFA type used. Overall, the mechanical properties showed an inverse relationship with the porosity as the developed porous alumina samples exhibited tensile and compressive strengths of 20.4–1.5 MPa and 179.5–10.9 MPa respectively. Moreover, higher strengths were observed in the SCB shaped samples up to the 15 wt% PFA mark, while beyond this point, the silica peak observed in the XRD pattern of the RH shaped samples favored their relatively high strength. The corrosion resistance characterization of the porous alumina samples in hot 10 wt% NaOH and 20 wt% H2SO4 solutions was also investigated by considering sample formulations with 5–15 wt% PFA addition. With increasing porosity, the mass loss range in RH and SCB shaped samples after corrosion in NaOH solution for 8 h were 1.25–3.6% and 0.44–2.9% respectively; on the other hand, after corrosion in H2SO4 solution for 8 h, the mass loss range in RH and SCB shaped samples were 0.62–1.5% and 0.68–3.3% respectively.  相似文献   

7.
《Ceramics International》2016,42(4):5141-5147
All porous materials have a common limitation which is lack of strength due to the porosity. In this study, two different methods have been used to produce porous β-tricalcium phosphate (β-TCP) scaffolds: liquid-nitrogen freeze casting and a combination of the direct-foaming and sacrificial-template methods. Among these two methods, porous β-TCP scaffolds with acceptable pore size and compressive strength and defined pore-channel interconnectivity were successfully fabricated by the combined direct-foaming and sacrificial-template method. The average pore size of the scaffolds was in the range of 100–150 µm and the porosity was around 70%. Coating with 4 wt% alginate on porous β-TCP scaffolds led to higher compressive strength and low porosity. In order to make a chemical link between the β-TCP scaffolds and the alginate coating, silane coupling agent was used. Treated β-TCP scaffold showed improvements in compressive strength of up to 38% compared to the pure β-TCP scaffold and 11% compared to coated β-TCP scaffold.  相似文献   

8.
《Ceramics International》2016,42(7):8478-8487
Highly porous alumina particle stabilized foams were prepared by combining the concepts of particle stabilized foams and gelcasting, using sulfonate surfactants and poly vinyl alcohol (PVA) as the gelcasting polymer. The ceramic samples sintered at 1500 °C for 2 h had porosities from 65% to 93%, with pore sizes in two categories: “big pore” around 300 μm and “small pore”, around 100–150 μm, depending on the type and amount of surfactant added. The mechanical behaviour of the foams (axial and diametral compression) depended on the overall porosity and pore size. On average, tensile and compressive strengths around 5 and 16 MPa respectively were measured for samples with bigger pore sizes and larger porosities. Samples with smaller pore sizes and lower porosities produced average values of 12 and 57 MPa for tensile and compressive strengths, respectively. The elastic modulus reached a maximum around 3GPa for “small pore” size samples. The effect of increasing amount of PVA in the samples had a strong effect on the green mechanical strength, but it did not significantly affect the mechanical response of the sintered alumina foams. Large and complex shape sintered components produced using this route showed a remarkable damage tolerance, due to crack tip blunting.  相似文献   

9.
The present study demonstrates a cost effective way to fabricate porous ceramics with tailored microstructures using rice husk (RH) of various range of particle sizes as a pore former and sucrose as a binder as well as a pore former. Sample microstructures reveal randomly oriented elongated coarse pores and fine pores (avg. size 4 μm) created due to burnout of RH and sucrose, respectively. Porous alumina ceramics with 20–66 vol% porosity and 50–516 μm avg. pore size (length), having isolated and/or interconnected pores, were fabricated using this process. Mechanical properties of the porous samples were determined as a function of porosity and pore microstructure. The obtained porous ceramics exhibited flexural strength of 207.6–22.3 MPa, compressive strength of 180–9.18 MPa, elastic modulus of 250–18 GPa and hardness of 149–18 HRD. Suggested application area includes thermal, filtration, gas purging etc.  相似文献   

10.
Highly porous (>60% open porosity) glass–ceramic scaffolds with remarkable mechanical properties (compression strength of ~15 MPa) were produced by indirect 3D printing. Precursor glass powders were printed into 3D ordered structures and then heat treated to sinter and develop crystalline phases. The final glass–ceramic contained a β-spodumene solid solution together with a secondary phase of lithium disilicate.The precision of the printed geometry and the density of the struts in the scaffold depended on several processing parameters (e.g. powder size and flowability, layer thickness) and were improved by increasing the binder saturation and drying time. Two types of powders with different particle size distribution (PSD) and flowability were used. Powders with a larger PSD, could be processed within a wider range of printing parameters due to their good flowability; however, the printing precision and the struts density were lower compared to the scaffolds printed using the powder in a smaller average PSD.  相似文献   

11.
Wollastonite-diopside scaffolds have been successfully developed by direct ink writing of an ink made of silicone polymer and inorganic fillers. The main reason for using a silicone in the ink formulation consisted in its double effect, in controlling the ink rheology and in developing of wollastonite and diopside crystalline phases upon heat treatment. The obtained 3D wollastonite-diopside scaffolds featured regular geometries, and a high compressive strength (3.9–4.9 MPa) when considering the large amount of porosity (68–76 vol.%). A glass with the same oxide composition as the silicone-based ink and crystallizing into wollastonite and diopside, was produced and used as additional filler. This addition enabled the fabrication of even stronger 3D printed scaffolds (∼8 MPa for a porosity of 67 vol%), owing to the enhanced viscous flow upon firing which reduced the micro-cracks in the scaffold struts generated by the preceramic polymer decomposition. The obtained highly porous wollastonite-diopside glass-ceramic scaffolds are suitable candidates for bone tissue engineering.  相似文献   

12.
The preparation of carbide-derived carbon (CDC) monoliths with a hierarchically structure in the nm and μm range is presented. Basis is the manufacturing of porous cellular SiC ceramics based on a biomorphous approach with μm porosity and subsequent conformal conversion to CDC by reactive extraction with chlorine. The SiC ceramics can be sintered at low temperatures and short times (1500 °C, 2 h) compared to classical preparation methods. The SiC ceramics show a macro pore volume (1–10 μm channel size) of 0.56 ml g−1, which corresponds to 1.5 ml g−1 in the resulting CDC. The final carbon material exhibits an additional nano pore volume of 0.525 ml g−1 with a mean slit pore size of 0.86 nm. Mechanical stabilities of the highly porous CDC are excellent (bending strength 2.1 ± 0.2 MPa, corrected Weibull modulus 8.7, characteristic strength 2.2 MPa and Youngs modulus 10.0 ± 0.5 GPa). The reactive extraction of the carbide monoliths shows very high reaction rates, approx. two dimensions faster (95×) compared to non-porous samples. Thus the manufacturing of the structured carbide and CDC can be performed at lower costs.  相似文献   

13.
《Ceramics International》2017,43(15):11780-11785
Porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds with a uniform unidirectional pore structure were successfully fabricated by an ice-templating method by using Ca-deficient HA whiskers and phosphate bioglass. HA whiskers showed good dispersibility in the slurry and favoured the formation of interconnected pores in the scaffolds. Addition of bioglass powders enhanced the material sintering process and the phase transformation of Ca-deficient HA to β-TCP. Calcium-phosphate-based scaffolds with a composition from HA to an HA/β-TCP complex could be obtained by controlling the freezing moulding system and slurry composition. The fabricated scaffolds had a porosity of 75–85%, compressive strength of 0.5–1.0 MPa, and a pore size range of 130–200 µm.  相似文献   

14.
In this work, polycaprolactone-coated alumina scaffolds were produced and characterized to validate the concept of polymer–ceramic composites with increased fracture resistance. Alumina scaffolds were sintered using a foam replication technique. An open-porous structure was achieved with ∼70% porosity and 150 μm mean pore size. The polymer coating was obtained by infiltrating the scaffold with either a polycaprolactone solution or a polycaprolactone nanodispersion. The latter was obtained by an emulsion–diffusion technique. Dynamical Young modulus measurements and four-point bending tests were conducted to evaluate the mechanical properties of the composites. It was found that their elastic behaviour is controlled on the first order by the ceramic scaffold, while the fracture energy mainly depends on the polymer phase. A 10–20 vol.% addition of polycaprolactone to alumina scaffolds led to a 7- to 13-fold increase of the apparent fracture energy. SEM observations showed that toughening is due to crack bridging by polymer fibrils.  相似文献   

15.
A new type of porous ceramic supports for membranes has been designed. The new supports have been fabricated from polycrystalline quartz sand and calcite raw materials. In this work, two configurations of support (tubular and flat) have been produced using extrusion method. The open porosity, the pore size distribution, the average pore size (APS), the strength and the permeability of sintered supports have been found to depend mainly on the weight ratio of calcite (CaCO3) additive. The results showed that with the addition of 15–35 wt.% of calcite and sintering temperature of about 1375 °C for 1 h the best characteristics of sintered supports could be obtained. The developed tubular ceramic supports with the APS 6.3–12 μm, open porosity 42–55%, the water permeability (16–68 m3/h m2 bar) and flexural strength 8–18 MPa hopefully offer many perspectives for a wide use in membranes technology.  相似文献   

16.
Silicate (13-93) and borate (13-93B3) bioactive glass scaffolds were created by robotic deposition (robocasting) of organic solvent-based suspensions and evaluated in vitro for potential application in bone repair. Suspensions (inks) were developed, characterized, and deposited layer-by-layer to form three-dimensional scaffolds with a grid-like microstructure (porosity ≈50%; pore width 420 ± 30 μm). The mechanical response of the scaffolds was tested in compression, and the conversion of the glass to hydroxyapatite (HA)-like material in a simulated body fluid (SBF) was evaluated. As fabricated, the 13-93 scaffolds had a compressive strength 142 ± 20 MPa, comparable to the strength of human cortical bone, while the strength of the 13-93B3 scaffolds (65 ± 11 MPa), was far higher than that for trabecular bone. When immersed in SBF, the borate 13-93B3 scaffolds converted faster than the silicate 13-93 scaffolds to an HA-like material, but they also showed a sharper decrease in strength with immersion time. Based on their high compressive strength and bioactivity, the scaffolds fabricated in this work by robocasting could have potential application in the repair of load-bearing bone.  相似文献   

17.
Silicon oxycarbide ceramic foams were fabricated in a single step manufacturing process using in situ foaming of SiOC powders loaded silicone resin. The effects of heating rate on the porosity, compressive strength and microstructure of the ceramic foams were investigated. The porosity (total and open) increased firstly and then decreased with increasing heating rate. It was possible to control the total and open porosity of ceramic foams within a range of 81.9–88.2% and 62.4–72.5% respectively, by adjusting the heating rate from 0.25 °C/min to 3 °C/min while keeping the silicone resin content at 90 vol%. However, the compressive strength decreased with increasing the heating rate progressively, and the average compressive strength of the foams was in the range of 1.0–2.3 MPa. Micrographs indicated that the ceramic foams which cross-linked at a heating rate less than 1 °C/min had a well-defined open-cell and regular pore structure.  相似文献   

18.
Porous silicon oxycarbide ceramics were obtained through pyrolysis of a new silicone resin filled with its pyrolyzed SiOC powders via a simple self-blowing process. The effects of filler content on the porosity, compressive strength and microstructure of the porous ceramics were investigated. The porosity (total and open) increased firstly and then decreased with the filler content increasing. It was possible to control the total and open porosity of porous ceramics within a range of 66.1–88.2% and 42.7–72.5% respectively, by adjusting the filler content from 0 vol% to 30 vol% while keeping the heating rate fixed at 0.5 °C/min. The compressive strength decreased firstly and then increased with the increasing filler content, and the average compressive strength of the porous ceramics was in the range of 1.1–3.4 MPa. Micrographs indicated that the porous ceramics with the filler content less than 20 vol% had a well-defined open-cell and regular pore structure.  相似文献   

19.
Fish collagen, a kind of fibrous protein, and egg white protein were selected as foaming agent to prepare ceramic foams by protein foaming method. Ceramic foams with open porosity of 84.8–86.9%, average pore size of 216–266 μm and compressive strength of 8.7–13.7 MPa were fabricated. Studies of fish collagen addition on the influence of open porosity, pore size distribution and mechanical property of ceramic foams were investigated. In comparison with single addition of 8 wt% egg white protein, the combinational addition of 2 wt% fish collagen and 6 wt% egg white protein results in 23% increase in average pore size. In addition, the introduction of fish collagen decreases the count of small pores. Moreover, with the introduction of fish collagen, pores become regular in shape.  相似文献   

20.
《Ceramics International》2015,41(7):9009-9017
Porous mullite ceramics were prepared via foam-gelcasting using industrial grade mullite powder as the main raw materials, Isobam-104 as the dispersing and gelling agent, sodium carboxymethyl cellulose as the foam stabilizing agent, and triethanolamine lauryl sulfate as the foaming agent. The effects of processing parameters such as type and amount of additive, solid loading level and gelling temperature on rheological properties and gelling behaviors of the slurries were investigated. The green samples after drying at 100 °C for 24 h were fired at 1600 °C for 2 h, and the microstructures and properties of the resultant porous ceramic samples were characterized. Based on the results, the effects of foaming agent on the porosity level, pore structure and size and mechanical properties of the as-prepared porous mullite ceramics were examined. Porosity levels and pore sizes of the as-prepared samples increased with increasing the foaming agent content up to 1.0%, above which both porosity levels and pore sizes did not change. The compressive strength and flexural strength of the as-prepared sample with porosity of 76% and average pore size of 313 μm remained as high as 15.3±0.3 MPa and 3.7±0.2 MPa, respectively, and permeability increased exponentially with increasing the porosity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号