首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the present study, effect of hybridization on the hybrid composite armors under ballistic impact is investigated using hydrocode simulations. The hybrid composite armor is constructed using various combinations and stacking sequences of fiber reinforced composites having woven form of fibers specifically high specific-modulus/high specific-strength Kevlar fiber (KF), tough, high strain-to-failure fiber Glass fiber (GF) and high strength/high stiffness Carbon fiber (CF). Different combinations of composite armors studied are KF layer in GF laminate, GF layer in KF laminate, KF layer in CF laminate and CF layer in KF laminate at various positions of hybridized layers for a fixed thickness of the target. In this article the results obtained from the finite element model are validated for the case of KF layer in a GF laminate with experimental predictions reported in the literature in terms of energy absorption and residual velocity and good agreement is observed. Further, the effect of stacking sequence, projectile geometry and target thickness on the ballistic limit velocity, energy absorbed by the target and the residual velocity are presented for different combinations of hybrid composite armors. The simulations show that, at a fixed thickness of the hybrid composite armor, stacking sequence of hybridized layer shows significant effect on the ballistic performance. The results also indicate energy absorption and ballistic limit velocity are sensitive to projectile geometry. Specifically, it is found that arranging the KF layer at the rear side, GF layer in the exterior and CF layer on the front side offers good ballistic impact resistance. The hybrid composite armor consisting of a CF layer in KF laminate acquires maximum impact resistance and is the best choice for the design compared to that of other combinations studied.  相似文献   

2.
为了研究玻璃纤维-不锈钢网混杂增强环氧树脂层合板在球形弹高速斜冲击下的损伤特性,利用一级气炮对2 mm厚度的玻璃纤维增强环氧树脂复合材料层合板和含一层、三层304不锈钢网的玻璃纤维-不锈钢网混杂增强环氧树脂层合板进行倾角为30°的冲击实验,以揭示304不锈钢网对层合板弹道极限和能量吸收的影响规律,并分析层合板损伤特征及其机理。通过实验发现,含有三层不锈钢网层合板的弹道极限最高,而不含不锈钢网层合板和含一层不锈钢网层合板的弹道极限速度接近。层合板吸收的能量随着弹体速度增加呈现出先增加后趋于平稳,然后急剧上升的趋势。层合板损伤模式为基体开裂和破碎、分层、不锈钢丝拉伸断裂、纤维拉伸断裂和剪切断裂。层合板分层损伤面积随弹体速度增大先增大后减小,最后趋于稳定。当弹体速度较低时,层合板主要发生纤维拉伸断裂、基体开裂、层间有分层损伤产生。随着弹体速度的增大,层合板正面纤维逐渐发生压剪断裂、基体破碎,背面纤维发生严重的拉伸撕裂。   相似文献   

3.
目的 比对波纹轧制结构和平面复合结构的Mg/Al复合板抗冲击性能与吸能机制.方法 采用波纹辊轧制工艺制备Mg/Al复合板,使用半球形铝合金弹丸对传统平面复合板与波纹复合板进行不同速度下的冲击试验研究,并对比分析2种复合板的损伤机理,探明波纹结构对复合板抗冲击性能的影响.结果 Mg/Al平面复合板抗半球形弹丸冲击的吸能机制主要是通过靶板的塑性变形、剪切破坏、拉伸断裂、分层破坏和弹丸与靶板间摩擦等形式来吸收能量.波纹复合板对冲击能量的吸收主要依赖靶板的局部塑性变形、沿着波纹方向的开裂、结合界面的分层以及弹丸与靶板间的摩擦耗能.结论 当冲击速度低于弹道极限速度时,波纹复合板的抗冲击性能优于平面复合板,高于弹道极限速度时,2种复合板的抗冲击性能和耗能程度相当.  相似文献   

4.
This paper presents the effect of test parameters such as Impact velocity, configuration and target thickness on ballistic performance of weldox steel plates against 7.62 mm APM2 projectile using Taguchi method. Trials were planned using an L 18 orthogonal array with 18 combinations of test variables to assess the influence of various factors. Numerical simulations have been carried out using Ansys Autodyn code with the above three process variables. Failure mechanisms of target plates of various single and multi-layered configurations were also discussed. Most portion of the kinetic energy of the projectile was expended in plastic deformation of the target material before perforation due to better bending stiffness of the target plate. Results showed that target thickness and impact velocity were the significant variables on residual velocity. Layer configuration was found to be insignificant relating to ballistic performance. Significant interaction is observed between impact velocity and target thickness from interaction plots. Simulated and experimental results showed good agreement with each other.  相似文献   

5.
In this paper the ballistic behaviour of several glass/polyester laminate structures was studied, evaluating the residual velocity of the projectile and the damage area. Three monolithic laminates of different thicknesses and two multiplate laminate structures were analyzed: one of a sandwich type with face-sheets of glass/polyester and a foam core, and another made with the same face-sheet, which were separated by a distance equal to the thickness of the core. It was found that laminates of greater thickness show a larger damage area and a greater ballistic limit. The influence of the core on the ballistic limit of multiplate laminate structures is negligible but, nevertheless, the extension of the damage area in the back face-sheet is increased.  相似文献   

6.
为了揭示TC4钛合金板抗撞击性能与失效模式随厚度的变化规律及机理,采用ABAQUS/Explicit有限元软件建立平头弹撞击不同厚度靶板的模型,对弹体撞击不同厚度靶板进行计算。通过对比数值仿真与撞击实验结果,验证仿真模型的有效性。研究结果表明,靶板的主要失效模式、耗能机制、弹道极限随其厚度增加会发生改变,靶板厚度存在对应的转折值。对于TC4钛合金薄板,当靶板厚度比较小时,靶板拉伸撕裂破坏占主导作用。但是,当靶板厚度比较大时,靶板主要失效模式是局部剪切破坏。当靶板厚度小于4 mm、大于8 mm时,弹道极限速度随靶板厚度的增加而增加;当厚度为4~8 mm时,弹道极速度变化不明显。  相似文献   

7.
The high velocity impact response of composite laminated plates has been experimentally investigated using a nitrogen gas gun. Tests were undertaken on sandwich structures based on Kevlar-29 fiber/epoxy resin with different stacking sequence of 6061-T6 Al plates. Impact testing was conducted using cylindrical shape of 7.62 mm diameter steel projectile at a range of velocities (180–400 m/s) were investigated to achieve complete perforation of the target. The numerical parametric study of ballistic impact caused by same conditions in experimental work is undertaken to predict the ballistic limit velocity, energy absorbed by the target and comparison between simulation by using ANSYS Autodyn 3D v.12 software and experimental work and study the effects of shape of the projectile with different (4, 8 and 12 mm) thicknesses on ballistic limit velocity. The sequence of Al plate position (front, middle and back) inside laminate plates of composite specimen was also studied. The Al back stacking sequence plate for overall results obtained was the optimum structure to resist the impact loading.The results obtained hereby are in good agreement with the experimental (maximum error of 3.64%) data where it has been shown that these novel sandwich structures exhibit excellent energy absorbing characteristics under high velocity impact loading conditions. Hence it is considered suitable for applications of armor system.  相似文献   

8.
The ballistic performance of 17 penetrator materials, representing 5 distinct steel alloys treated to various hardnesses along with one tungsten alloy, has been investigated. Residual lengths and velocities, as well as the ballistic limit velocities, were determined experimentally for each of the alloy types for length-to-diameter (L/D) ratio 10 projectiles against finite-thick armor steel targets. The target thickness normalized by the projectile diameter (T/D) was 3.55. For some of the projectile types, a harder target, with the same thickness, was also used. It was found that the ballistic limit velocity decreases significantly when the projectile hardness exceeds that of the target. Numerical simulations are used to investigate some of the observed trends. It is shown that the residual projectile length is sensitive to projectile hardness; the numerical simulations reproduce this experimental observation. However, the observed trend in residual velocity as a function of projectile hardness is not reproduced in the numerical simulations unless a material model is invoked. It is assumed that the plastic work per unit volume is approximately a constant, that is, there is a trade off between strength and ductility. Using this model, the numerical simulations reproduce the experimentally observed trend.  相似文献   

9.
High-velocity transverse impact of laminated fiber reinforced composites is of interest in military, marine and structural applications. The overall objective of this work was to investigate the behavior of laminated thermoplastic composites of varying thicknesses under high-velocity impact from an experimental and modeling viewpoint. In order to analyze this problem, a series of ballistic impact tests have been performed on plain weave E-glass/polypropylene (E-glass/PP) composites of different thicknesses using 0.30 and 0.50 caliber right-cylinder shaped projectiles. A gas gun with a sabot stripper mechanism was employed to impact the panels. In order to analyze the perforation mechanisms, ballistic limit and damage evaluation, an explicit three-dimensional finite element code LS-DYNA was used. Material model 162, a progressive failure model based on modified Hashin’s criteria, has been assigned to analyze failure of the laminate. The projectile was modeled using Material model 3 (MAT_PLASTIC_KINEMATIC). The laminates and the projectile were meshed using brick elements with single integration points. The impact velocity ranged from 187 to 332 m s−1. Good agreement between the numerical and experimental results was attained in terms of predicting ballistic limit, delamination and energy absorption of E-glass/PP laminate.  相似文献   

10.
纤维增强复合材料三明治板破片穿甲数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
研究破片对(由钢板、纤维增强复合材料板及钢板叠合而成)纤维增强复合材料三明治板穿甲过程中能量转化规律。进行破片模拟弹丸(FSP)对不同结构三明治板高速穿甲数值仿真,获得FSP破片对16种三明治板的弹道极限,并与实验结果对比验证数值仿真的可信度。通过分析数值仿真结果,进一步研究破片临界贯穿条件下纤维增强复合材料三明治板各组成部分吸能比率与结构尺寸相关性。结果表明,不同厚度夹层板的吸能比率恒定(芳纶纤维10.41%,玻璃纤维2.68%),夹层板内能随厚度的增加呈二次函数增加。由此获得破片对纤维增强复合材料三明治板弹道极限速度计算方法。  相似文献   

11.
Metallic sandwich structures with aluminium foam core are good energy absorbers for impact protection. To study their ballistic performance, quasi-static and impact perforation tests were carried out and the results are reported and analysed in this paper. In the experiments, effects of several key parameters, i.e. impact velocity, skin thickness, thickness and density of foam core and projectile shapes, on the ballistic limit and energy absorption of the panels during perforation are identified and discussed in detail.  相似文献   

12.
为研究弹体头部形状对碳纤维层合板抗冲击性能的影响,利用一级气炮发射卵形头弹、半球形头弹和平头弹,对2 mm厚碳纤维层合板进行了冲击实验。利用公式拟合处理实验数据,揭示弹体头部形状对靶板弹道极限与能量吸收的影响,并且分析靶板冲击损伤形貌及机理特征。研究结果表明:平头弹弹道极限最高,半球形头弹次之,卵形头弹最低。弹体在低速度冲击时,弹体头部形状对靶板能量吸收率的影响更为显著。平头弹冲击时,靶板迎弹面受到均匀分布的环向剪切力,纤维同时被剪切,基体发生大面积剪切破坏。半球形头弹冲击时,靶板迎弹面受到非均匀分布的剪切力和挤压作用,纤维发生剪切断裂和拉伸断裂,基体发生剪切破坏和挤压破碎。卵形头弹冲击时,纤维发生单一的拉伸断裂,而基体则发生挤压破碎。弹体头部形状对靶板损伤的影响主要集中在迎弹面和中部纤维层。  相似文献   

13.
Impact results of woven E-glass/epoxy composite laminates are presented in this paper. A gas gun was employed to launch 12.7 mm diameter hemispherically-tipped projectiles 35.5 g in weight. The developed laser Doppler anemometer (LDA) system was successfully employed to record the projectile velocity history, whose range was from several m/s to twice the ballistic limit of the target, and was converted into the force history by using both the optimization and the polynomial curve-fitting methods. It was found that, when the projectile initial velocity was lower than the ballistic limit, the delamination area was approximately proportional to the initial energy of the projectile, and the relationship between the absorbed energy and initial energy of the projectile followed a straight line of unit slope when it was expressed non-dimensionally. Also, the incremental rate of the peak impact force became gradually smaller and finally reached a constant value at the ballistic limit, and the impact force history became progessively asymmetric. Beyond the ballistic limit, the absorbed energy remained approximately constant regardless of the increase of the initial striking velocity of the projectile. The peak impact force, on the other hand, was surprisingly found to increase again.  相似文献   

14.
刘文辉  黄浩 《工程力学》2012,29(11):289-294
通过建立7.62mm穿甲弹侵彻铝合金板的模型,采用Johnson-Cook材料模型模拟研究了焊接接头的强度失配对铝合金板抗弹性能的影响。研究结果表明:当子弹侵彻铝合金焊接接头附近时,由于材料的不均匀变形,子弹会改变侵彻方向,其方向角的改变大小与子弹速度、侵入位置、弹头形状、强度失配比、靶板厚度有关;当子弹以低速侵彻铝合金板中间的软焊缝材料时,由于变形局部化,出现材料的抗弹性能低于纯焊缝材料的情况;由于子弹侵彻方向的改变,出现部分区域的抗弹性能高于铝合金基体材料的情况。研究结果为不均匀材料的抗弹性能研究提供参考。  相似文献   

15.
《Composites Part B》2004,35(4):291-297
The ballistic perforation test results of 4-step 3-dimensional (3D) braided Twaron®/epoxy composites, which were subjected to impact by conically cylindrical steel projectile, are presented. The residual velocities of projectile perforated composites target at various strike velocities were measured and also compared with that from finite element calculation. ‘Fiber inclination model’ for 3D textile composites was adopted to decompose the 3D braided composite at quasi-microstructure level for the geometrical modeling in preprocessor of FEM. The material modeling was also based on this simplified model. The finite element code of Ls-Dyna was used to simulate the impact interaction between projectile and inclined lamina. The residual velocity of projectile perforating the entire 3D braided composite can be calculated from the sum of kinetic energy loss of the projectile that obtained from FEM. From the simulation of ballistic penetration process and comparison between numerical results and experimental results, it proves that the analysis scheme of quasi-microstructure level in this paper is valid and reasonable. The simplified method in this paper could be extended to model other kinds of 3D textile composites under ballistic impact.  相似文献   

16.
Q235钢单层板对平头刚性弹抗穿甲特性研究   总被引:1,自引:0,他引:1  
采用撞击实验和理论模型对单层金属板的抗侵彻性能进行了研究,分析了靶体厚度对抗侵彻性能的影响。通过对比撞击实验和理论模型计算结果,验证了理论模型和参数的有效性。结果表明,采用合适的理论模型能够有效地预测靶板在弹体撞击下的弹道极限。此外,分析了靶体在弹体撞击下的塑性变形总耗能,包括靶板局部变形和整体变形的耗能,同时考虑了靶体材料的应变率效应。在平头弹撞击厚靶的工况中,引入了一个修正函数对靶体厚度进行修正。  相似文献   

17.
In this research, two thicknesses of a woven CFRP laminate have been subjected to impact by a steel sphere in a velocity regime ranging from 170 to 374 m/s. Impact and penetration of targets at normal and oblique incidence were studied using high speed video. For the normal incidence targets at the higher velocities of impact, a conical mass of laminate was ejected ahead of the projectile. Furthermore, despite the energy transferred to the plate increasing with impact energy, the degree of delamination in the thicker targets decreased indicating a change in projectile penetration mechanism. Eventually, the degree of delamination in the thicker targets appeared to approach an asymptotic level whereas for the thinner targets the degree of delamination appeared constant regardless of impact energy. For oblique targets, more of the kinetic energy was transferred from the projectile when compared to the same thickness of target that had been subjected to a normal incidence impact. However, this was merely due to a geometrical effect. Further, thicker panels appeared to behave more efficiently by absorbing more kinetic energy per effective linear thickness at the lower impact energies where petalling is a dominant factor in the penetration. This advantage appeared to disappear as the impact energy was increased.  相似文献   

18.
This paper presents the influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene (UHMWPE) composite laminate. UHMWPE composite laminates, reinforced by three kinds of fabric structures, unidirectional prepreg, 2D plain-woven and 3D single-ply orthogonal woven fabrics, were fabricated via hot pressing curing process. Through a series of standard ballistic tests, we demonstrated that unidirectional composite laminates exhibit higher ballistic impact velocity and absorbed energy capacity compared to others. A bi-linear relationship was found between the ballistic limit velocity and specimen thickness. Furthermore, the dominant failure mechanisms of unidirectional composite laminates were identified to be plugging and hole friction for thin laminates, whereas delamination, fiber tension and bulging for thick ones.  相似文献   

19.
纤维复合材料的弹道吸能研究   总被引:27,自引:3,他引:24       下载免费PDF全文
本文通过大量的实弹试验考察与分析了芳纶、超高分子量聚乙烯纤维、玻璃纤维、碳纤维复合材料弹道吸能随面密度、弹速、成型压力、树脂基体含量等改变而变化的规律, 揭示出不同纤维复合材料在不同条件下的防弹能力。研究结果对防弹复合材料及其轻质复合装甲的优化设计具有较重要的参考意义。   相似文献   

20.
使用Abaqus/Explicit有限元分析软件,开展平头弹撞击不同厚度双层TC4钛合金板数值模拟,研究双层TC4钛合金板撞击失效特性与失效模式随厚度变化规律及机理。通过对比撞击试验与仿真结果,验证数值模型和参数的有效性。在此基础上与等厚度单层TC4钛合金板的抗侵彻性能进行对比,结果表明,对于12.68 mm直径的平头弹,在靶板厚度2~16 mm内,双层结构的弹道极限与总厚度近似呈线性关系。由于单层靶板在4~10 mm内随着厚度增加,弹道极限无明显变化,所以等厚接触式双层结构在该厚度范围相比单层靶有明显的优势。在总厚度为8 mm时,双层靶优势最为明显,弹道极限相比单层靶提高了43%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号