首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用Green函数法和保角映射法解答了双相介质界面附近一个椭圆孔洞和一个裂纹(在同一侧)对SH波的散射问题。沿水平界面将双相介质剖分为一个含椭圆孔和裂纹的半空间以及一个完整的弹性半空间。结合“裂纹切割”法,利用Green函数法构造裂纹,求解出孔洞与裂纹同时存在时的位移和应力表达式。一组未知力系施加在水平界面上,使两部分契合,基于界面连续条件推导出一系列Fredholm积分方程组,从而求出未知力系。最后,给出算例讨论了不同参数对椭圆孔周边动应力集中系数和裂纹尖端动应力强度因子的影响。  相似文献   

2.
乐金朝  王博 《工程力学》1996,(A01):296-301
本文利用三维断裂力学的超奇异积分方程的求解方法,对双相材料空间中垂直于界面的平片裂纹在剪切载荷作用下的问题作了研究,首先使用边元界法,在有限部分积分的意义下的问题归结为一组以裂纹面位移间断(位错)为未知函数的超奇异积分方程,然后使用有限部分的理论,并给出边界元法为其建立了数值法,在此基础上,讨论了用裂纹面位移间断计算应力强度因子的方法,最后以两个典型的平片裂纹问题的应力强度因子进行了计算,其数值结  相似文献   

3.
利用积分方程方法,本文研究了夹在两个均匀压电半空间的功能梯度压电带界面共线双裂纹的反平面问题。在电渗透型边界条件下,通过Fourier余弦变换将所考虑的问题化为一对偶积分方程,再用Copson方法将该对偶积分方程转化为Fredholm方程进行数值求解,从而给出了裂纹尖端的应力强度因子,电位移强度因子的表达式。分析了裂纹长度,功能梯度非均匀参数以及材料的几何尺寸等对应力强度因子的影响。  相似文献   

4.
利用区间B样条小波良好的局部化性能,将内聚力模型(CZM)引入小波有限元法(WFEM)数值分析中,以区间B样条小波尺度函数作为插值函数,构造小波内聚力界面单元,推导了小波内聚力界面单元刚度矩阵,基于虚拟裂纹闭合技术(VCCT)计算界面裂纹应变能释放率(SERR),采用β-Κ断裂准则,实现界面裂纹扩展准静态分析。将WFEM和传统有限元法(CFEM) 的SERR数值分析结果与理论解进行比较,结果表明:采用WFEM和CFEM计算的SERR分别为96.60 J/m2 和 101.43 J/m2,2种方法的SERR数值解与理论解相对误差分别为1.85%和3.06%,这明确表明WFEM在计算界面裂纹扩展方面能用较少单元和节点数获得较高的计算精度和效率。在此基础上,探讨了界面裂纹初始长度和双材料弹性模量比对界面裂纹扩展的影响,分析结果表明:界面裂纹尖端等效应力随界面裂纹初始长度的增加而增加;双材料弹性模量比相差越大,界面裂纹越易于扩展,且裂纹扩展长度也越大,因此可通过调节双材料弹性模量比来延缓界面裂纹扩展。   相似文献   

5.
无网格法模拟复合型疲劳裂纹的扩展   总被引:11,自引:2,他引:9  
本文提出了用无网格Galerkin法模拟构件在复合变形作用下疲劳裂纹扩展路径并预估其疲劳寿命的方法。该法能够自然模拟疲劳裂纹的扩展,不需要网格重构,避免了裂纹扩展过程中的精度受损。应用无网格数值结果计算了J积分和应力强度因子IK和IIK;按照最大周向应力理论获得了裂纹扩展偏斜角。基于最小应变能密度因子理论,确定了裂纹扩展量aD,并能获得疲劳载荷的循环周数ND。文末对数值模拟结果和实验拟合结果进行了对照。  相似文献   

6.
基于计算J积分的等效原场应力方法,利用等效原场应力σeff只有外加载荷意义而不再具有拉伸或者弯曲等载荷类型方面的属性,提出了利用现有含裂纹结构的纯拉伸以及纯弯曲J积分全塑性解直接计算拉弯联合载荷下的J积分简化估算方法。该方法可以直接利用已经存在的J积分纯拉伸和纯弯曲全塑性解来计算拉弯联合载荷下的J积分,简化了拉弯联合载荷下J积分全塑性解的计算;并且可以应用于任意应力-应变材料,包括Ramborg-Osgood关系的材料和任意单调加载非R-O关系材料。计算过程简便。并通过与有限元计算结果对比对之进行验证,说明其工程实用性,为对含裂纹结构进行弹塑性断裂评定奠定基础。  相似文献   

7.
为提高非均匀材料界面裂纹尖端断裂参数的求解精度,基于非均匀材料界面断裂力学、Cell-Based光滑有限元(Cell-SFEM)和非均匀材料的互交作用积分法,提出了求解非均匀材料界面裂纹尖端断裂参数的CellBased光滑有限元法,推导了基于Cell-Based光滑有限元法的非均匀材料的互交作用积分法,对非均匀材料间的界面裂纹尖端处正则应力强度因子进行了求解,并与参考解进行了比较,讨论了互交积分区域大小和光滑子元个数与正则应力强度因子的关系。数值算例结果表明:本方法具有很高的计算精度,对积分区域大小不敏感,可为设计、制造抗破坏非均匀材料提供依据。  相似文献   

8.
根据应力强度因子在线弹性范围内具有可叠加性,将金属裂纹板复合材料修补结构进行简化,在表面裂纹线弹簧模型的基础上,建立了基于超奇异积分方程的Line-Spring模型。利用第二类Chebyshev多项式展开的方法,将超奇异积分方程转化为线性方程组,推导出以裂纹面位移表示的应力强度因子表达式,得到了裂纹尖端应力强度因子的数值解,并利用虚拟裂纹闭合法加以验证。参数分析确定了影响对称修补裂纹板应力强度因子的两个主要参数:胶层界面刚度和补片与金属板刚度比,为胶接修补结构的承载能力分析以及改进设计提供理论依据。  相似文献   

9.
利用Green函数法、复变函数法和保角映射法研究了双相介质半空间存在直线裂纹与椭圆形夹杂组成的复合缺陷对SH波的散射问题并给出了解析解。采用保角映射法将椭圆形夹杂外域映射为单位圆外域并利用镜像叠加原理构造了一个能自动满足直角域两个直线边界应力自由边界条件的散射位移场。利用裂纹"切割"技术构造区域I中的直线裂纹,并根据弹性叠加原理得出直角域中同时存在裂纹与椭圆形夹杂时的位移场和应力场。采用"契合"法在界面上添加未知的外力系以满足界面上的应力和位移连续性条件,根据连续性条件建立求解未知力系的定解积分方程组,并通过截断有限项求解。具体算例给出了不同参数条件下椭圆形夹杂的动应力集中系数分布情况,结果表明裂纹将对椭圆形夹杂的动应力集中系数的分布产生影响。  相似文献   

10.
侯帅  朱有利  邱骥  倪永恒 《材料工程》2019,47(1):139-146
采用修正的J积分计算方法,考虑残余应力、残余应变和残余应变能,定量计算和分析喷丸强化对半椭圆表面裂纹前沿J积分参数的影响规律。对喷丸强化工艺进行有限元建模仿真,通过改变约束条件生成疲劳裂纹并施加远场载荷,计算J积分和裂纹扩展速率。考虑不同深度的半椭圆表面裂纹和不同丸粒速率对断裂参量的影响。结果表明:丸粒速率一定时,与未喷丸相比喷丸后J积分值的降幅随裂纹深度的增加而减小,喷丸强化有益于抑制疲劳浅裂纹的扩展。当裂纹深度为0.3mm时,裂纹最深点的J积分值由4.25N/mm降低到2.99N/mm,降幅约30.1%。裂纹深度一定时,J积分值随丸粒速率的增大而降低,提高丸粒速率对抑制裂纹扩展更有益。  相似文献   

11.
Mixed-mode fractures of arbitrary orientation with respect to a planar bimaterial interface have been effectively modelled using a surface integral approach. By requiring only that the surface of the fracture be discretized, the surface integral method circumvents the practical difficulties associated with having to mesh the interacting dual singularities in stress along the three-dimensional (3-D) crack front and at the interface. The key elements of this numerical capability are discussed in detail. These include: the derivation of the fundamental solutions for a generalized fracture event near a planar bimaterial interface, formulation of the governing integral equation including its decomposition into singular and non-singular terms, development of analytical and numerical techniques for performing the singular integrations, and efficient numerical integration of the non-singular terms using non-dimensionalized surface approximations of the dipole solutions. The problem of a pressurized planar crack near a bimaterial interface was used to assess convergence. The effect of material contrast and crack shape on tendencies for crack growth were also examined.  相似文献   

12.
In finite element analysis the interaction integral has been a useful tool for computing the stress intensity factors for fracture analysis. This work extends the interaction integral to account for non-uniform temperatures in the calculation of stress intensity factors for three dimensional curvilinear cracks either in a homogeneous body or on a bimaterial interface. First, the derivation of the computational algorithm, which includes the additional terms developed by the non-zero gradient of the temperature field, is presented in detail. The algorithm is then implemented in conjunction with commercial finite element software to calculate the stress intensity factors of a crack undergoing non-uniform temperatures on both a homogeneous and a bimaterial interface. The numerical results displayed path independence and showed excellent agreement with available analytical solutions.  相似文献   

13.
A crack impinging upon a frictional, bimaterial interface is studied theoretically. Specifically we consider the problem of an infinitely long, cracked, two-dimensional fiber, which is embedded in an infinite plane with distinct elastic properties. The composite is subjected to tensile loading parallel to the fiber. An interface integral equation method is developed to solve this problem. This method, involving to-be-determined distributions of line forces, reduces the specific problem considered here to four coupled integral equations which are solved numerically. The bimaterial effect appears to be significant with respect to the length of the slip zone along the interface and the interfacial shear stress. However, the blunting of the crack by the frictional interface is virtually independent of the bimaterial effect.  相似文献   

14.
The problem of crack deflection in bimaterial systems is considered in this paper. The material combinations may be of piezoelectric-piezoelectric, or one is piezoelectric and the other is not. Based on the Stroh formulation for anisotropic material, Green's functions for various bimaterial combinations are presented within the framework of two-dimensional electroelasticity, allowing the crack problem to be expressed in terms of coupled singular integral equations. A crack impinging on an interface joining two dissimilar materials may arrest or may advance be either penetrating the interface or deflecting into the interface. The competition between deflection and penetration is investigated using the maximum energy release rate criterion. Numerical results are presented to study the role of remote electroelastic loads on the path selection of crack extension. Key words: Crack, piezoelectric material, interface, Green's function, singular integral equation.  相似文献   

15.
Complete stress and electric fields near the tip of a conducting crack between two dissimilar anisotropic piezoelectric media, are obtained in terms of two generalized bimaterial matrices proposed in this paper. It is shown that the general interfacial crack-tip field consists of two pairs of oscillatory singularities. New definitions of real-valued stress and electric field intensity factors are proposed. Exact solutions of the stress and electric fields for basic interface crack problems are obtained. An alternate form of the J integral is derived, and the mutual integral associated with the J integral is proposed. Closed form solutions of the stress and electric field intensity factors due to electromechanical loading and the singularities for a semi-infinite crack as well as for a finite crack at the interface between two dissimilar piezoelectric media, are also obtained by using the mutual integral.  相似文献   

16.
The paper is an application of boundary integral equations to the problem of a crack located on the bimaterial interface under time-harmonic loading. A system of linear algebraic equations is derived for solving the problem numerically. The distributions of the displacements and tractions at the bimaterial interface are obtained and analysed for the case of a penny-shaped crack under normal tension-compression wave. The dynamic stress intensity factors (normal and shear modes) are also computed. The results are compared with those obtained for the static case.  相似文献   

17.
In this paper the stress intensity factors are discussed for an inclined elliptical crack near a bimaterial interface. The solution utilizes the body force method and requires Green’s functions for perfectly bonded semi-infinite bodies. The formulation leads to a system of hypersingular integral equation whose unknowns are three modes of crack opening displacements. In the numerical calculation, unknown body force densities are approximated by using fundamental density functions and polynomials. The results show that the present method yields smooth variations of stress intensity factors along the crack front accurately. Distributions of stress intensity factors are presented in tables and figures with varying the shape of crack, distance from the interface, and elastic modulus ratio. It is found that the inclined crack can be evaluated by the models of vertical and parallel cracks within the error of 24% even for the cracks very close to the interface.  相似文献   

18.
Typical bimaterial interfaces are non-planar due to surface facets or roughness. Crack-tip stress fields of an interface crack must be influenced by non-planarity of the interface. Consequently, interface toughness is affected. In this paper, the crack-tip fields of a finite crack on an elastic/rigid interface with periodic undulation are studied. Particular emphasis is given to the fracture mechanics parameters, such as the stress intensity factors, crack-tip energy release rate, and crack-tip mode mixity. When the amplitude of interface undulation is very small relative to the crack length (which is the case for rough interfaces), asymptotic analysis is used to convert the non-planarity effects into distributed dislocations located on the planar interface. Then, the resulting stress fields near the crack tip are obtained by using the Fourier integral transform method. It is found that the stress fields at the crack tip are strongly influenced by non-planarity of the interface. Generally speaking, non-planarity of the interface tends to shield the crack tip by reducing the crack-tip stress concentration.  相似文献   

19.
Strain energy release rate (SERR) components for an interface crack in two-dimensional orthotropic media were obtained using finite element (FE) analysis. The elastic analysis of interface cracks results in oscillatory singularity. This is prevalent over a very small zone near the crack-tip, where the traction free crack faces undergo unacceptable deformations resulting in the interpenetration of crack faces. The individual and total strain energy release rates are calculated using modified crack closure integral (MCCI) method. Although the total SERR converges, it is observed that the individual SERR components are dependent on the values of the smallest element size (Δa) at the crack-tip. It is observed that both the crack opening and sliding displacements are oscillatory when the interpenetration is allowed in the contact zone. The contact zone length (rc) calculated using Suo's analytical expression [Singularities, interfaces and cracks in dissimilar anisotropic media. Proc. Royal Soc. London, Ser A427 (1990) 331] is in good agreement with the results from FE analysis and MCCI calculations. However, for the chosen material properties, the estimated contact zone length based on the analytical expression proposed by Ni and Nemat-Nasser [J. Mech. Phys. Solids 39 (1991) 113] exhibits a large deviation from the present FE results. It is seen that the mode-II behavior dominates the crack growth, even under mode-I loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号