首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
A new type poly(vinyl alcohol) (PVA)/peat/bamboo charcoal (BC)/KNO3 composite bead was prepared, which has a diameter of 2.4–6.0 mm and a density of 1.133 g/cm3 and is a porous spherical particle. The biochemical kinetic behaviors of n‐butyl acetate in PVA/peat/BC/KNO3 spherical composite bead biofilter (BC biofilter) and PVA/peat/granular activated carbon (GAC)/KNO3 spherical composite bead biofilter (GAC biofilter) were investigated. The values of half‐saturation constant Ks for BC biofilter and GAC biofilter were 27.89 and 27.95 ppm, respectively. The values of maximum reaction rate Vm for BC biofilter and GAC biofilter were 13.49 and 13.65 ppm/s, respectively. Zero‐order kinetic with the diffusion limitation was regarded as the most adequate biochemical reaction model for the two biofilters. The microbial growth rate and biochemical reaction rate for two biofilters were inhibited at higher inlet concentration, and the degree of inhibitive effect was more pronounced in the inlet concentration range of 100–800 ppm. The biochemical kinetic behaviors of the two biofilters were similar. The maximum elimination capacity of BC biofilter and GAC biofilter were 111.65 and 122.67 g C/h m3 bed volume, respectively. The PVA/peat/BC/KNO3 composite bead was suitable as a biofilter material. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A new type of poly(vinyl alcohol)/nitrocellulose/granular activated carbon/KNO3 composite bead was prepared and shown to be suitable for use as a filter material in the biofiltration process. This composite bead was a porous spherical particle with a diameter of 2.4–6.0 mm and a density of 1.125 g/cm3. The amount of water-soluble nitrogen dissolved out of this composite bead was 145.5 mg N/g dry composite bead. The biochemical kinetic behaviors of n-butyl acetate in a spherical poly(vinyl alcohol) (PVA)/nitrocellulose (NC)/granular activated carbon (GAC)/KNO3 composite bead biofilter (NC biofilter) and a spherical PVA/peat/GAC/KNO3 composite bead biofilter (peat biofilter) were investigated. The values of the half-saturation constant K s for the NC biofilter and the peat biofilter were 33.55 and 35.54 ppm, respectively. The values of the maximum reaction rate V m for the NC biofilter and the peat biofilter were 23.83 and 22.46 ppm/s, respectively. Diffusion-limited zero-order kinetics were regarded as the most adequate biochemical reaction model for the two biofilters. The microbial growth rates and biochemical reaction rates for the two biofilters were inhibited at higher inlet concentrations. The biochemical kinetic behaviors of the two biofilters were similar. The maximum elimination capacities of the NC biofilter and the peat biofilter were 170.72 and 174.51 g C/h m3 bed volume, respectively. The PVA/nitrocellulose/GAC/KNO3 composite bead made it easier for the microbes to adjust to their new environment and secrete exocellular enzymes to break down the substrate.  相似文献   

3.
In this study, a mathematical model of a fixed bed Granular Activated Carbon (GAC) biofiltration system was developed to predict the organic removal efficiency of the filter. The model consists of bulk transportation, adsorption, utilization, and biodegradation of organics. The variation of the specific surface area due to biofilm growth and the effect of filter backwash were also included in the model. The intrapellet diffusion and the diffusion of substrate in the biofilm were described by linear driving force approximation (LDFA) method. Biodegradation of organics was described by Monod kinetics. Sips adsorption isotherm was used to analyze the initial adsorption equilibrium of the system. The model showed that the organic removal efficiency of the biofilter greatly depends on the parameters related to the biological activities such as the maximum rate of substrate utilization (kmax) and biomass yield (Y) coefficients. Parameters such as suspended cell concentration (Xs) and decay constant (Kd) had little effects on the model simulation results. The filter backwash also had no significant impact on the performance of the biofilter.  相似文献   

4.
Ozone has been shown to be effective in the transformation of several chemicals of emerging concern that escape the wastewater treatment process, but there is concern whether toxic transformation products are formed. Two parallel biofilter columns with granular activated carbon (GAC) and filter sand following a pilot-scale ozone unit to treat secondary treated municipal wastewater were studied. Results show reduced wastewater genotoxicity following ozonation and further reduction following biofiltration. The BAC biofilter outperformed the sand biofilter in terms of reduction in both organics and genotoxicity. Biofilter performance correlated with biological indicators (dissolved oxygen reduction and effluent E. coli counts) but not with ATP bioactivity measurements. Limited bacterial (E. coli) regrowth was observed in treated effluent from both biofilters.  相似文献   

5.
The work reported here describes the aerobic biodegradation of reduced sulfur compound mixtures in air streams by biofilters. Rates of removal of hydrogen sulfide as a sole substrate and in the presence of organo‐sulfur compounds were determined to see if there were any inhibitory effects of the organo‐sulfur compounds on the rate of hydrogen sulfide removal. Experiments were conducted in three bench‐scale biofilters packed with the mixtures of compost/perlite (4:1), hog fuel/ perlite (4:1), and compost/hog fuel/perlite (2:2:1), respectively. Hydrogen sulfide, the predominant odorous gas produced from kraft pulping processes, was used as the main pollutant (substrate). Other organo‐sulfur species (dimethyl sulfide and dimethyl disulfide), also emitted from kraft pulp mills, were used as competing (secondary) substrates in the waste gas stream. To describe rates of removal a Michaelis–Menten type kinetic equation was modified to incorporate the plug flow behavior of biofilters, and used in evaluating the pseudo‐kinetic parameters, Vmax (the maximum removal rate) and Km (the half saturation concentration), for hydrogen sulfide biodegradation, and the type of macrokinetic competition between hydrogen sulfide and the organo‐sulfur compounds. No significant differences in V max for the three biofilters were observed. The V max ranged between 136 and 147 g m−3 h −1, while the Km varied from 44 to 59 ppmv for the three biofilters. Hydrogen sulfide elimination capacity was not affected by the presence of any of the organo‐sulfur species in all of the three biofilters, confirming earlier results that hydrogen sulfide removal in biofilters is independent of the presence of organo‐sulfur compounds mainly because of its easy biodegradability. © 1999 Society of Chemical Industry  相似文献   

6.
The feasibility of the radical copolymerizations of β‐pinene with three N‐substituted maleimides, i.e. N‐phenylmaleimide (PhMI), N‐methylmaleimide (MeMI), and N‐ethylmaleimide (EtMI), was clarified for the first time. The copolymerization rates decreased in the order PhMI > MeMI > EtMI. A marked penultimate effect on the activity of the N‐substituted maleimide‐terminated radicals was found in these copolymerizations. The penultimate monomer reactivity ratios evaluated by the nonlinear method were r1 = 0.10, r1 = 8.30, r2 = r2 = 0 for PhMI–β‐pinene, r1 = 0.20, r1 = 7.09, r2 = r2 = 0 for MeMI–β‐pinene, and r1 = 0.16, r1 = 6.50, r2 = r2 = 0 for EtMI–β‐pinene. Furthermore, the possible controlled copolymerizations of β‐pinene and N‐substituted maleimides were then attempted via the reversible addition‐fragmentation chain transfer (RAFT) technique. In the presence of RAFT agent 1‐phenylethyl phenyldithioacetate, the copolymerization of β‐pinene with MeMI or EtMI was retarded severely. However, much smaller retardation was observed in the RAFT copolymerization of β‐pinene with PhMI, and, more importantly, the copolymerization exhibited typical features of a controlled system. The solvent effect on the RAFT copolymerization of β‐pinene and PhMI was also investigated using matrix‐assisted laser desorption ionization time‐of‐fight mass spectrometry (MALDI‐TOF‐MS) analysis. The results clearly indicated that copolymerization in tetrahydrofuran suffered from competitive transfer and termination side‐reactions arising from the solvent in spite of the presence of the RAFT agent. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
BACKGROUND: The integration of UV photocatalysis and biofiltration seems to be a promising combination of technologies for the removal of hydrophobic and poorly biodegradable air pollutants. The influence of pre‐treatments based on UV254 nm photocatalysis and photo‐oxidation on the biofiltration of toluene as a target compound was evaluated in a controlled long‐term experimental study using different system configurations: a standalone biofilter, a combined UV photocatalytic reactor‐biofilter, and a combined UV photo‐oxidation reactor (without catalyst)‐biofilter. RESULTS: Under the operational conditions used (residence time of 2.7 s and toluene concentrations 600–1200 mg C m?3), relatively low removal efficiencies (6–3%) were reached in the photocatalytic reactor and no degradation of toluene was found when the photo‐oxidation reactor was operated without catalyst. A noticeable improvement in the performance of the biofilter combined with a photocatalytic reactor was observed, and the elimination capacity of the biological process increased by more than 12 g C h?1 m?3 at the inlet loads studied of 50–100 g C h?1 m?3. No positive effect on toluene removal was observed for the combination of UV photoreactor and biofilter. CONCLUSIONS: Biofilter pre‐treatment based on UV254 nm photocatalysis showed promising results for the removal of hydrophobic and recalcitrant air pollutants, providing synergistic improvement in the removal of toluene. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
BACKGROUND: Biofiltration is a suitable odor reduction technique for the treatment of gaseous emissions from composting processes, but little is known about the start‐up of full‐scale biofilters after material replacement and their performance after several years of operation. RESULTS: Biofilter material (wood chips used previously as bulking agent in a composting process) can effectively remove ammonia and most of the volatile organic compounds (VOCs) content, achieving removal efficiencies greater than 70% for VOCs and near 90% for ammonia immediately after material replacement. These removal efficiencies were maintained for several months after material replacement. In the studied full‐scale biofilter no lag phase was observed in the removal of ammonia whereas in the case of VOCs different patterns were detected during biofilter start‐up. For the old biofilter material, after 4 years of operation, a statistically significant decrease of removal efficiency for ammonia in comparison with the new material was detected. No statistically significant differences were found in the case of VOCs. CONCLUSIONS: Data on the emissions of several pollutants from biofilters treating composting exhaust gases have been systematically obtained. The tested filtering media presented adequate properties for biofiltration of gases emitted during the composting process. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
A novel trickling fibrous-bed bioreactor was developed for biofiltration to remove pollutants present in contaminated air. Air containing benzene as the sole carbon source was effectively treated with a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in the trickling biofilter, which was wetted with a liquid medium containing only inorganic mineral salts. When the inlet benzene concentration (Cgi) was 0·37 g m−3, the benzene removal efficiency in the biofilter was greater than 90% at an empty bed retention time (EBRT) of 8 min or a superficial air flow rate of 1·8 m3 m−2 h−1. In general, the removal efficiency decreased but the elimination capacity of the biofilter increased with increasing the inlet benzene concentration and the air (feed) flow rate. It was also found that the removal efficiency decreased but the elimination capacity increased with an increase in the loading capacity, which is equal to the inlet concentration divided by EBRT. The maximum elimination capacity achieved in this study was ∽11·5 g m−3 h−1 when the inlet benzene concentration was 1·7 g m−3 and the superficial air flow rate was 3·62 m3 m−2 h−1. A simple mathematical model based on the first-order reaction kinetics was developed to simulate the biofiltration performance. The apparent first order parameter Kl in this model was found to be linearly related to the inlet benzene concentration (Kl=4·64−1·38 Cgi). The model can be used to predict the benzene removal efficiency and elimination capacity of the biofilter for benzene loading capacity up to ∽30 g m−3 h−1. Using this model, the maximum elimination capacity for the biofilter was estimated to be 12·3 g m−3 h−1, and the critical loading capacity was found to be 14 g m−3 h−1. The biofilter had a fast response to process condition changes and was stable for long-term operation; no degeneration or clogging of the biofilter was encountered during the 3-month period studied. The biofilter also had a relatively low pressure drop of 750 Pa m−1 at a high superficial air flow rate of 7·21 m3 m−2 h−1, indicating a good potential for further scale up for industrial applications. © 1998 Society of Chemical Industry  相似文献   

10.
Two series of composites, i.e., polyvinyl alcohol (PVA)/oxidized starch (OST)/exfoliated α‐zirconium phosphate (POST‐ZrPn) and PVA/starch (ST)/exfoliated α‐zirconium phosphate (PST‐ZrPn), were fabricated using a casting and solvent evaporation method. The composites were characterized by Fourier transform infrared spectroscopy (FT‐IR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), tensile testing, and moisture uptake. Compared with PST‐ZrPn, POST‐ZrPn films with the same component ratio showed higher tensile strength (σb), lower elongation at break (εb) and improved water resistance. Additionally, in the POST‐ZrPn series, σb and εb increased with an increase in α‐zirconium phosphate (α‐ZrP) loading; however, higher α‐ZrP loads resulted in the aggregation of α‐ZrP particles. Compared with POST‐ZrP0, the values for σb, εb, and water resistance of POST‐ZrP3, containing 1.5 wt % α‐ZrP, were increased by 128.8%, 51.4%, and 30.2%, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A study of filament‐wound glass fiber/epoxy composite tubes under biaxial fatigue loading is presented. The focus is placed on fatigue lives of tubular specimens under tension/torsion biaxial loading at low cycle up to 100,000 cycles. Filament‐wound glass‐fiber/epoxy tubular specimens with three different lay‐up configurations, namely [±35°]n, [±55°]n, and [±70°]n lay‐ups, are subjected to in‐phase proportional biaxial cyclic loading conditions. The effects of winding angle and biaxiality ratio on the multiaxial fatigue performance of composites are discussed. Specimens are also tested under two cyclic stress ratio: R = 0 and R = −1. The experimental results reveal that both tensile and compressive loading have an influence on the multiaxial fatigue strength, especially for [±35°]n specimens. A damage model proposed in the literature is applied to predict multiaxial fatigue life of filament‐wound composites and the predictions are compared with the experimental results. It is shown that the model is unsuitable for describing the multiaxial fatigue life under different cyclic stress ratios. POLYM. COMPOS. 28:116–123, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Owing to the complexity of conventional methods and shortcomings in determining kinetic parameters, a convenient approach using the nonlinear regression analysis of Monod or Haldane type nonlinear equations is presented. This method has been proven to provide accurate estimates of kinetic parameters. The major work in this study consisted of the testing of aromatic compound‐degrading cultures in batch experiments for the biodegradation of benzene, methyl tert‐butyl ether (MTBE), and toluene. Additionally, batch growth data of three pure cultures (i.e., Pseudomonas aeruginosa YAMT421, Ralstonia sp. YABE411 and Pseudomonas sp. YATO411) isolated from an industrial petrochemical wastewater treatment plant under aerobic conditions were assessed with the nonlinear regression technique and with a trial‐and‐error procedure to determine the kinetic parameters. The growth rates of MTBE‐, benzene‐, and toluene‐degrading cultures on MTBE, benzene, and toluene were significant. Monod's model was a good fit for MTBE, benzene and toluene at low substrate concentrations. In contrast, Haldane's equation fitted well in substrate inhibition concentration. Monod and Haldane's expressions were found to describe the results of these experiments well, with fitting values higher than 98%. The kinetic parameters, including a maximum specific growth rate (µm), a half‐saturation constant (Ks), and an inhibition constant (Ki), were given. Copyright © 2007 Society of Chemical Industry  相似文献   

13.
Biofiltration has been established as a promising alternative to conventional air pollution control technologies. However, gas biofilters modeling has been less developed than experimental research due to the complexity of describing the fundamental processes and the lack of globally accepted physical, chemical and biological parameters. In addition, biofiltration modeling based on degradation activity of fungi has been rarely considered. For this reason, in this work, a dynamic model describing toluene abatement by a bacterial and fungal biofilter is developed, calibrated and validated. The mathematical model is based on detailed mass balances which include the main processes involved in the system: convection, absorption, diffusion and biodegradation. The model was calibrated and validated using experimental data obtained from two equal lab-scale biofilters packed with coconut fiber and pine leaves, respectively. Both reactors were operated under similar conditions during 100 days at an empty bed residence time of 60 s and an average inlet load of 77 g toluene m−3 h−1. Biofilters were initially inoculated with a bacterial consortium, even though reactors were mostly colonized by fungi after 60 days of operation according to microscopic observation and reactors pH. Removal efficiency increased notably from 20% for the bacterial period to 80% for the fully developed fungal biofilters. Since kinetic parameters are strongly dependent on the biological population, semi-saturation constants for toluene and maximum growth rates were determined for bacterial and fungal operation periods. Kinetic parameters were fitted by means of an optimization routine using either outlet concentrations or removal efficiency data from the coconut fiber biofilter. A novel procedure in gas biofilters modeling was considered for checking the model calibration, by the assessment of the parameters confidence interval based on the Fisher Information Matrix (FIM). Kinetic parameters estimated in the coconut fiber reactor were validated in the pine leaves biofilter for bacterial and fungal operation. Adequate model fitting to the experimental outlet gas concentration for both bacterial and fungal operation periods was verified by using a standard statistical test.  相似文献   

14.
Three identical biofilters, run under the same conditions but inoculated with different mixed cultures, were fed a mixture of toluene, ethylbenzene, and o-xylene (TEX) gases. Inert porous perlite was used as support material, in contrast to the more conventional biofiltration systems where natural supports are used. Biodegradation started in all three biofilters a few hours after inoculation, without previous adaptation of the inocula to the toxic mixture. Despite acidification of the systems to pH values below 4·5, the elimination capacities reached were fully satisfactory. The best performing biofilter, in which bacteria were dominant, showed an elimination capacity of 70 g TEX m−3 h−1 with a near complete removal of the mixture up to an influent concentration of 1200 mg TEX m−3 at a gas residence time of 57 s. Most of the ingoing carbon was recovered as carbon dioxide in the outgoing gas. In the other biofilters fungi dominated and performance was slightly worse. With single substrates, the elimination capacity was higher for toluene and ethylbenzene than for the TEX mixture, whereas o-xylene removal was slowest in all cases. Also when feeding the mixture to the biofilters, o-xylene was removed most slowly.  相似文献   

15.
Biofiltration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic compounds through microbial degradation. Biofiltration can reduce the need for chemicals in drinking water treatment and thus improved applications of biofiltration in drinking water treatment can be viewed as green or sustainable engineering technology. Recent trends in biofiltration technology for drinking water treatment have or have attempted to extend the performance of biofilters through gaining a better understanding of operational constraints. This review articles summarizes important operational parameters influencing biofiltration performance such as hydraulic loading, empty bed contact time (EBCT), temperature, media type, and backwashing conditions. In addition, recent advancements in biofiltration operations including, ozonation, ammonia removal and the influence of nutrient (nitrogen, phosphorous) supplementation to facilitate carbon removal are explored. ? 2015 Society of Chemical Industry  相似文献   

16.
Poly(β‐pinene) was brominated by N‐bromosuccinimide on the allylic carbons. Then the brominated product was activated by AlEt2Cl to initiate the polymerization of styrene to give a β‐pinene/styrene graft copolymer. AlEt2Cl was selected because it alone could not initiate the polymerization of styrene. The obtained graft copolymer was characterized by GPC, 1H‐NMR, and DSC measurements, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 599–603, 2000  相似文献   

17.
Competitive glycosidase inhibitors are generally sugar mimics that are costly and tedious to obtain because they require challenging and elongated chemical synthesis, which must be stereo‐ and regiocontrolled. Here, we show that readily accessible achiral (E)‐1‐phenyl‐3‐(4‐strylphenyl)ureas are potent competitive α‐glucosidase inhibitors. A systematic synthesis study shows that the 1‐phenyl moiety on the urea is critical for ensuring competitive inhibition, and substituents on both terminal phenyl groups contribute to inhibition potency. The most potent inhibitor, compound 12 (IC50=8.4 μM , Ki=3.2 μM ), manifested a simple slow‐binding inhibition profile for α‐glucosidase with the kinetic parameters k3=0.005256 μM ?1 min?1, k4=0.003024 min?1, and ${K{{{\rm app}\hfill \atop {\rm i}\hfill}}}$ =0.5753 μM .  相似文献   

18.
The hydrolytic resolution of (R,S)‐2,2,2‐trifluoroethyl α‐chlorophenylacetate in water‐saturated isooctane containing Lipase MY(I) at 35 °C is selected as the best reaction condition for producing (R)‐α‐chlorophenyl acetic acid. The kinetic constants, and hence an enantiomeric ratio of 33.6, are estimated and employed for the modeling of time‐course conversions of both substrates by considering product inhibition and enzyme deactivation effects. A successful dynamic kinetic resolution is also achieved, giving the desired (R)‐α‐chlorophenylacetic acid of 93.0% yield and eeP = 89.5% when 80 mmol dm?3 trioctylamine acting as the racemization catalyst and enzyme activator is initially added. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
The effect of α‐ and β‐nucleating agents (NA) of various amounts on the fracture behavior of polypropylene‐co‐ethylene (CPP) was evaluated using the essential work of fracture (EWF) method. The specific EWF values of CPPs incorporated with α‐NA of different amount were all lower than that of pure CPP, while the specific nonessential work of fracture was the highest at relative low α‐NA loading (0.1 wt %), and then decreased with further increasing amount of α‐NA. Similar trend of variation was observed with increasing amount of β‐NA in CPP, and it was found that the variation of Kβ for β‐NA nucleated CPP versus NA content accorded well with the EWF versus NA content, which indicated that the addition of β‐NA could lead to effectively increased β‐crystal content and consequently improved fracture resistance of CPP. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
BACKGROUND: In this study, the biofiltration of air streams laden with monochlorobenzene (MCB) vapours was investigated using a trickling biofilter operated co‐currently. The device was filled with ceramic material and inoculated with an acclimated microbial culture. A neutralization process was carried out in a separate unit using crushed oyster shells. Long‐term biofilter performance was evaluated over a 10‐month period of continuous experiments under different influent pollutant concentrations from 0.10 to 1.75 g m?3, sequentially stepped up through three different apparent air residence times of 60, 30, and 15 s. RESULTS: Pollutant removal was shown to be complete at influent concentrations up to 1.25, 0.75 and 0.20 g m?3, and apparent air residence times of 60, 30, and 15 s, respectively. The maximum elimination capacity was found to be 95.0 g mPM?3 h?1 for an influent concentration of 1.0 g m?3 and an apparent air residence time of 30 s, corresponding to a loading rate of 120.0 g mPM?3 h?1. Monochlorobenzene and biomass concentration profiles along the biofilter evidenced the dependence of microbial concentration distribution on the pollutant loading rate and the existence of a linear relationship between biomass concentration and specific pollutant removal rate, regardless of the operating conditions applied. A macrokinetic analysis shows that the MCB removal rate is zeroth order for low values of MCB concentration. A critical value of MCB concentration exists at all superficial air velocity at which the biomass growth is inhibited. A simple kinetic model is developed which is able to describe the inhibition behaviour under any operating conditions. CONCLUSION: The experimental results indicated that the system was effective and stable under various working conditions and over a long operating period, provided that the loading conditions corresponding to substrate inhibition of microbial growth are not exceeded. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号