首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adsorption coupled with electrostatic interaction as an immobilization technique is an important microbial cell immobilization technique. Treatment of the polymer matrix with the cationic surface treating agent chitosan for lactic acid production has been studied. Cells of Lactobacillus plantarum NCIM 2084 were immobilized on a polypropylene (PP) matrix treated with different concentrations of chitosan. The biocatalyst adsorbed on the 1.0 g dm?3 chitosan‐treated PP matrix proved to be most effective. Repeated batch fermentation experiments showed that the immobilized biocatalyst could be recycled effectively 11 times. Studies were also carried out in a packed bed reactor with media recirculation. A high productivity of 7.66 g dm?3 h?1 could be obtained with a conversion of 94% and a yield of 97% at an average residence time of 30 h. © 2001 Society of Chemical Industry  相似文献   

2.
BACKGROUND: The production of pullulan from synthetic medium by Aureobasidium pullulans P56 immobilized in Ca‐alginate beads was investigated using batch and repeated batch fermentation systems. RESULTS: The highest pullulan concentration (19.52 ± 0.37 g dm?3) was obtained with 2.0‐2.4 mm beads prepared from 2% sodium alginate solution. Pullulan production was mainly accomplished by immobilized fungal cells since leaked cells in the fermentation medium comprised 17.4% of the total fungal population at the end of fermentation. The pullulan proportion was 84.5% of the total polysaccharide in the fermentation medium. Response surface methodology was used to investigate the effects of three fermentation parameters (initial pH, agitation speed and incubation time) on the concentration of pullulan. Results of the statistical analysis showed that the fit of the model was good in all cases. The maximum pullulan concentration of 21.07 ± 0.48 g dm?3 was obtained at the optimum concentrations of process variables (pH 7.31, agitation speed 191.5 rpm, incubation time 101.2 h). The gel beads produced pullulan under the optimized conditions for six consecutive batch fermentations without marked activity loss and deformation. CONCLUSION: The results of this study suggest that the immobilization of A. pullulans cells in Ca‐alginate gel beads is suitable for batch and repeated batch production of pullulan. Copyright © 2007 Society of Chemical Industry  相似文献   

3.
BACKGROUND: Continuous ethanol fermentation of concentrated food waste hydrolysates has been studied. The process was carried out in an immobilized cell reactor with beads of calcium‐alginate containing immobilized Saccharomyces cerevisiae H058 at temperature 30 °C and pH 5.0. RESULTS: The total residual sugar decreased with increase of hydraulic retention time (HRT) under various reducing sugar concentrations. Ethanol production by immobilized cells increased with increase in HRT, regardless of the substrate concentrations employed. The highest ethanol concentration of 89.28 g L?1 was achieved at an HRT of 5.87 h and reducing sugar concentration of 200 g L?1. At an HRT of 1.47 h, the maximum volumetric ethanol productivity of 49.88 g L?1 h?1 and the highest ethanol yield of 0.48 g g?1 were achieved at reducing sugar concentration of 160 and 200 g L?1, respectively. The difference between the fresh and the 30‐day Ca–alginate immobilized cell was also shown by scanning electronic micrographs of beads taken from their outer and inner surfaces. CONCLUSIONS: Continuous ethanol production from concentrated food waste hydrolysates using immobilized yeast cells is promising in view of the high ethanol productivity obtained at relatively high conversion and excellent reactor stability. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
The effects of temperature, pH, and medium composition on lactic acid production by Lactobacillus casei were investigated. The highest lactic acid productivity values were obtained at 37 °C and pH 5.5. The productivity was 1.87 g dm?3 h?1 at 37 °C in shake flasks. In the fermenter, a productivity of 3.97 g dm?3 h?1 was obtained at pH 5.5. The most appropriate yeast extract concentration was 5.0 g dm?3. Whey yielded a higher productivity value than the analytical lactose and glucose. Initial whey lactose concentration did not affect lactic acid productivity. MnSO4 ·H2O was necessary for lactic acid production by L casei from whey. Product yields were approximately 0.93 g lactic acid g lactose?1. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9‐77 g dm?3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with corresponding power terms, which enabled adjustment of the model for low‐ and high‐substrate conditions. The Luedeking‐Piret equation defined the product formation kinetics. Substrate consumption was explained by production rate and maintenance requirements. A maximum productivity of 2.5 g dm?3 h?1 was attained with an initial lactose concentration of 35.5 g dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
BACKGROUND: A great amount of wastewater with high contents of chemical oxygen demand (COD) are produced by ethanol production. It would be useful to utilize distillery wastewater to produce L‐lactic acid, which could be a high additional value byproduct of ethanol production. The fermentation process of L‐lactic acid production by a newly isolated Enterococcus hawaiiensis CICIM‐CU B0114 is reported for the first time. RESULTS: The strain produced 56 g L?1 of L‐lactic acid after cultivation for 48 h in optimized medium consisting of (g L?1) 80 glucose, 10 peptone, 10 yeast extract, 1.5 Na2HPO4 and 0.2 MgSO4. E. hawaiiensis CICIM‐CU B0114 was isolated and purified by subculture for growing and producing L‐lactic acid in distillery wastewater of very high gravity (VHG) from ethanol fermentation. L‐lactic acid fermentation was further studied with distillery wastewater substrate in 7 L and 15 L fermentors. The results showed that L‐lactic acid concentrations of 52 g L?1 and 68 g L?1 was achieved in 7 L and 15 L fermentors with the initial sugar concentrations of 67 g L?1 and 87 g L?1, respectively. CONCLUSION: The production of L‐lactic acid by the newly isolated E. hawaiiensis CICIM‐CU B0114 was carried out and the fermentation medium was optimized by orthogonal experimental design. This new strain holds the promise of L‐lactic acid production utilizing distillery wastewater from VHG ethanol fermentation. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Attempts were made to determine the lactic acid production efficiency of novel isolate, Enterococcus faecalis RKY1 using four different starches (corn, tapioca, potato, and wheat starch) with different concentrations (50, 75, 100, and 125 g L?1) and corn steep liquor as an inexpensive nitrogen source. RESULTS: The yield of lactic acid from each starch was higher than 95% based on initial starch concentrations. High lactic acid concentration (129.9 g L?1) and yield (1.04 g‐lactic acid g?1‐starch) were achieved faster (84 h) from 125 g L?1 of corn starch. Among the starches used, tapioca starch fermentation usually completed in a shorter incubation period. The final dry cell weight was highest (7.0 g L?1) for the medium containing 75 g L?1 of corn starch, which resulted in maximum volumetric productivity of lactic acid (3.6 g L?1 h?1). The addition of 30 g L?1 corn steep liquor supplemented with a minimal amount of yeast extract supported both cell growth and lactic acid fermentation. CONCLUSION: Enterococcus faecalis RKY1 was found to be capable of growing well on inexpensive nutrients and producing maximum lactic acid from starches and corn steep liquor as lower‐cost raw materials than conventionally‐used refined sugars such as glucose, and yeast extract as an organic nitrogen source in laboratory‐scale studies. These fermentation characteristics are prerequisites for the industrial scale production of lactic acid. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Process variables were optimized for the production of lactic acid from pretreated beet molasses by Lactobacillus delbrueckii IFO 3202 for batch and continuous fermentations. In the batch fermentation, maximum yields (95·4% conversion, 77·1% effective) and maximum lactic acid volumetric productivity (4·83 g dm−3 h−1) was achieved at 45°C, pH 6·0, 78·2 g dm−3 sugar concentration with 10 g dm−3 yeast extract. Various cheaper nitrogen sources were replaced with yeast extract on equal nitrogen bases in batch fermentation. Of all the nitrogen sources tested, yeast extract yielded the highest and malt sprouts yielded the second highest level of lactic acid. In the continuous fermentation, maximum lactic acid (4·15%) was obtained at a dilution rate of 0·1 h−1. Maximum volumetric lactic acid productivity (11·20 g dm−3 h−1) occurred at D = 0·5 h−1 dilution rate. © 1997 SCI.  相似文献   

9.
The continuous production of ethanol from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor has been investigated. At a substrate concentration of 150 g dm?3, maximum ethanol productivity of 16 g dm?3 h?1 was obtained at D = 0·4 h?1 with 62·3% of theoretical yield and 83·6% sugars′ utilization. At a dilution rate of 0·1 h?1, optimal ethanol productivity was achieved in the pH range 3·5–5·5, temperature range 30–35·C and initial sugar concentration of 200 g dm?3. Maximum ethanol productivity of 24·5 g dm?3 h?1 was obtained at D = 0·5 h?1 with 58·8% of theoretical yield and 85% sugars′ utilization when non-sterilized carob pod extract containing 200 g dm?3 total sugars was used as feed material. The bioreactor system was operated at a constant dilution rate of 0·5 h?1 for 30 days without loss of the original immobilized yeast activity. In this case, the average ethanol productivity, ethanol yield (% of theoretical) and sugars′ utilization were 25 g dm?3 h?1, 58·8% and 85·5%, respectively.  相似文献   

10.
Polyacrylamide‐co‐acrylic acid (PA) added to shake flask cultures of Acetobacter xylinum at concentrations up to 3 g dm?3 resulted in increased production of bacterial cellulose. For PA concentrations of 0–3 g dm?3, 7‐day cellulose production rose monotonically from 2.7 ± 0.8 to 6.5 ± 0.5 g dm?3 at a shaker speed of 175 rpm, and from 1.7 ± 0.01 to 3.7 ± 0.5 g dm?3 at shaker speed of 375 rpm. Addition of PA also changed the morphology of the biomass from amorphous/stringy forms to spheroidal particles with diameters ≤2 mm. Similarly, bioreactor cultures grown in the absence of PA formed long fibrous masses which deposited on the internals, while those grown in the presence of 1–2 g dm?3 PA formed small discrete particles with diameters ≤0.1 mm. Tests performed with 1 and 2 g dm?3 PA, and stirrer speeds from 500 to 900 rpm, appeared to give the highest cellulose concentration of 5.3 ± 0.7 g dm?3 in 64–68.5 h in the presence of 2 g dm?3 PA at 700 rpm, although this value was statistically indistinguishable from that obtained at 1 g dm?3 PA and 900 rpm. A qualitative model is proposed to describe the mechanisms by which PA affects biomass morphology, resulting in its advantageous formation as small, dispersed, spheroidal pellets. Quantitative analysis of the results gave inverse correlations between both the fraction of fructose carbon going to cellulose synthesis and the specific fructose consumption rate, and the maximum cellulose concentration and the fraction of fructose carbon going to by‐product formation. Since cellulose yield was almost universally improved by higher polyacrylamide concentration, it appears likely that increased viscosity reduces fructose uptake rate by limiting mass transfer. Copyright © 2003 Society of Chemical Industry  相似文献   

11.
Lactic acid was produced from pretreated beet molasses by the homofermentative organism Lactobacillus delbrueckii subsp delbrueckii IFO 3202 entrapped in calcium alginate gel using batch, repeated batch and continuous fermentation systems. In batch fermentation studies successful results were obtained with 2.0–2.4 mm diameter beads prepared from 2% sodium alginate solution. The highest effective yield (82.0%) and conversion yield (90.0%) were obtained from substrate concentrations of 52.1 and 78.2 g dm−3 respectively. The gel beads produced lactic acid for 14 consecutive batch fermentations without marked activity loss and deformation. In the continuous fermentation, the highest lactic acid (4.22%) was obtained at a dilution rate of 0.1 h−1 while the highest productivity (13.92 g dm−3 h−1) was obtained at a dilution rate of 0.4 h−1. © 1999 Society of Chemical Industry  相似文献   

12.
The effects caused by alkaline treatment on the susceptibility of waste cardboard to enzymatic hydrolysis have been studied. Optimised conditions leading to extensive saccharification of both cellulose (870 g kg?1 conversion) and hemicelluloses (845 g kg?1 conversion) were identified. Samples treated under selected operational conditions were employed for producing D ‐lactic acid by simultaneous saccharification and fermentation (SSF) in media containing cellulases, β‐glucosidase and Lactobacillus coryniformis ssp torquens cells. SSF fed‐batch experiments led to D ‐lactic acid concentrations up to 23.4 g dm?3 at a product yield of 514 g lactic acid kg?1 of potential glucose and a volumetric productivity of 0.48 g dm?3 h?1. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
BACKGROUND: Gluconic acid (GA) production by immobilized cells of mutant Aspergillus niger ORS‐4.410 on polyurethane sponge (PUS) and calcium‐alginate (Ca‐alginate) was evaluated in repeated batches of solid state surface fermentation (SSF) and submerged fermentation (SmF) conditions, respectively, utilizing rectified grape must as carbon source. RESULTS: The passive immobilization of cells in fermentation medium solid support of having 0.4 cm3 cube size, 4% spore suspension, 0.6 g inoculum of PUS immobilized cells at 32 °C and 2.0 L min?1 resulted in the maximum GA production (88.16 g L?1) with a 92.8% yield, while the Ca‐alginate matrix with a 0.5 cm diameter bead size, 2–3% spore suspension, 15 g inoculum at 34 °C and 150 rpm agitation speed revealed 67.19 g L?1 GA with a 85.2% yield. Repeated use of PUS showed higher levels of GA (110.94 g L?1) in the third–fourth fermentation cycles with 95–98% yield and 22.50 g L?1 d?1 productivity under SSF that was 2.5‐fold higher than the productivity obtained from a typical fermentation cycle, and 54% greater than the productivity obtained with repetitive use of Ca‐alginate immobilized cells of A. niger under SmF. CONCLUSION: Using immobilized cells of A. niger in PUS, the rectified form of grape must can be utilized for GA production as an alternative source of carbohydrate by replacing the conventional fermentation conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
Cell reuse was compared with conventional batch culture for lactic acid fermentation, the objective was to simplify the batch process and to alleviate the need for added nitrogen. At high levels of nitrogen supplementation to the culture medium (20 g dm?3 yeast extract and 5 g dm?3 each of tryptic and pancreatic casein peptones), similar mean production rates were obtained with partial cell reuse and the conventional batch process, without any additional gain when cells were initially reactivated at acidic pH. On the other hand, cell reuse with an initial period without pH control appeared particularly effective for low levels of nitrogen supplementation (5 g dm?3 yeast extract): a 57% increase in the mean production rate with regard to the conventional batch process was obtained. © 2001 Society of Chemical Industry  相似文献   

15.
BACKGROUND: A variety of nitrogen sources were tested for lactic acid production. Corn steep liquor is a low‐cost by‐product that could replace some of the expensive nutrients of the general lactobacilli media. This work deals with the optimisation of the composition of a low‐cost medium for lactic acid production from apple pomace by Lactobacillus rhamnosus CECT‐288. RESULTS: Corn steep liquor (CSL) and yeast extract (YE) were evaluated as nutrient sources for lactic acid production from apple pomace. In comparison with media containing CSL, experiments with YE led to higher volumetric productivities but lower lactic acid concentrations and product yields. The presence of YE increased the production of acetic acid. In media containing 0.2 g CSL g?1 potential sugars, 29.5 g lactic acid L?1 was obtained after 24 h, at good yield (35.5 g per 100 g dry apple pomace) and productivity (1.23 g L?1 h?1), with a lactic acid/acetic acid mass ratio of 98 g g?1. CONCLUSION: The experimental results proved that CSL is a suitable nutrient source for lactic acid production from apple pomace, even though the volumetric productivity was lower than in experiments employing YE. Considered as a nutrient supplement, CSL presents advantages over YE not only in terms of cost but also in terms of product yield, final lactic acid concentration and lactic acid/acetic acid mass ratio. The utilisation of apple pomace as the raw material and CSL as the sole nutrient source (both cheap by‐products) enables the production of lactic acid by an economical, environmentally friendly process. Copyright © 2008 Society of Chemical Industry  相似文献   

16.
The effect of pretreatment of molasses, nitrogen sources, natural oils, fatty acids, antioxidant, precursors, and mixtures of the above substances on β‐carotene production by Blakeslea trispora in shake flask culture was investigated. Also, a central composite design was employed to determine the maximum β‐carotene concentration at optimum values for the process variables (linoleic acid, kerosene, antioxidant). The highest concentration of the carotenoid pigment was obtained in molasses solution treated with invertase. Corn steep liquor and yeast extract at concentrations of 5.0% and 0.5% (w/v), respectively, increased slightly the concentration of β‐carotene, while the natural oils, fatty acids, and precursors (except kerosene) did not improve the production of pigment when they were added separately to the medium. On the other hand, the mixture of linoleic acid, kerosene and antioxidant increased significantly the concentration of β‐carotene. The fit of the model was found to be good. Linoleic acid, kerosene and antioxidant had a strong linear effect on β‐carotene concentration. The concentration of β‐carotene was significantly affected by linoleic acid–antioxidant and kerosene–antioxidant interactions as well as by the negative quadratic effects of these variables. The interaction between linoleic acid–kerosene had no significant linear effect. Maximum β‐carotene concentration (790.0 mg dm?3) was obtained in culture grown in molasses solution supplemented with linoleic acid (30.74 g dm?3), kerosene (27.79 g dm?3) and antioxidant (10.22 g dm?3). © 2002 Society of Chemical Industry  相似文献   

17.
Comparison of the production of L ‐phenylacetylcarbinol (L ‐PAC) from benzaldehyde by cells of Torulaspora delbrueckii immobilized in calcium alginate and barium alginate showed that cells immobilized in calcium alginate beads were usable for up to six cycles compared with nine cycles for barium alginate‐immobilized cells. Barium alginate‐immobilized cells yielded a total of 2.17 g of L ‐PAC in nine cycles whereas in the case of calcium alginate‐immobilized cells, a total of 1.17 g of L ‐PAC was formed when 400 mg benzaldehyde and 400 mm3 of acetaldehyde were used in each cycle as substrate and co‐substrate respectively. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
This study reports on the effects of internal fermenter and external in‐line agitation and fed‐batch mode of operation on citric acid production from Candida lipolytica using n‐paraffin as the carbon source. An optimum range of fermenter agitation speeds in the range 800–1000 rpm corresponding to Reynolds numbers of 50433–62947 (based on initial batch conditions) seemed to give the best balance between substrate utilization for biomass growth and citric acid production. Proof of concept evidence is presented that indicates that an external in‐line agitator could be used in place of high speed internal agitation to increase citric acid production. However, more work is required to optimize the external agitator concept. Application of multiple fed‐batch feedings can be used to extend the batch fermentation and increase final citric acid concentrations and product yield. Experiments were conducted implementing a three‐cycle fed‐batch process which increased overall citric acid yields to 0.8–1.0 g citric acid g?1 n‐paraffin, approximately 200% improvement from those found in the normal batch process. The three‐cycle fed‐batch mode of operation also increased the final citric acid concentration to 42 g dm?3 from about 6 g dm?3 for normal batch operation. Increased citric acid concentrations in three‐cycle fed‐batch mode was achieved at longer fermentation times. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
A new immobilized biocatalyst based on Rhizopus oryzae fungal cells entrapped in poly(vinyl alcohol)‐cryogel was evaluated in both the batch and semi‐batch processes of L (+)‐lactic acid (LA) production, when glucose, acid hydrolysates of starch or gelatinized potato starch were used as the main substrates. Under the batch conditions, the immobilized biocatalyst developed produced LA with yields of 94% and 78% from glucose and acid starch hydrolysates, respectively. Semi‐batch conditions enabled product yields of 52% and 45% to be obtained with the corresponding substrates. The highest process productivity (up to 173 g L?1) was reached under semi‐batch conditions. Potato starch (5–70 g L?1) was also transformed into lactic acid by immobilized R. oryzae. It was shown that long‐term operation of the immobilized biocatalyst (for at least 480 h) produced a low decrease in metabolic activity. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
For batch culture of lactic acid bacteria, seed cultures have to be highly supplemented with complex substrates to obtain an active inoculum. In contrast, for industrial applications, nitrogen supplementation of the fermenter culture must be kept low to minimize costs. Addition of inorganic phosphate, a low cost component, to the medium increased the lactic acid production rate (40% for media supplemented with 2 g dm−3 yeast extract), but had no effect on growth rate. This effect was absent for high‐nitrogen supplemented medium (20 g dm−3 yeast extract), because of the lack of phosphorus limitation. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号