首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用机械球磨法制备片状银粉,通过扫描电镜(SEM)、激光粒度分析仪和热重分析仪表征了银粉的形貌、粒度及纯度,研究球磨介质、球磨时间以及球磨前驱体球形银粉的形貌对片状银粉形貌及粒度的影响。结果表明,以乙醇为球磨介质,球磨时间为15 h,并采用粒径均一的球形银粉为球磨前驱体,能够机械球磨制备片状率高,粒径大小在4~6μm且均匀的片状银粉。将片状银粉配制成银胶,印刷并固化成线路后,测试了其电导率,达到了应用指标。  相似文献   

2.
高径厚比片状银粉的制备   总被引:1,自引:0,他引:1  
用水合肼(N2H4.H2O)化学还原制备超细银粉,将超细银粉用不同的球磨方法制备成片状银粉。通过片状银粉的性能对比发现,采用湿法球磨可以制备出厚度<100 nm、径厚比>50∶1的片状银粉,在浆料应用中银粉有较好的导电性能。  相似文献   

3.
车龙  堵永国  杨初 《贵金属》2015,36(2):33-37, 43
通过高能球磨制备的片状银粉将产生大量的晶体缺陷,这些缺陷的存在将影响银粉的导电性能。对高能球磨制得的片状银粉进行了热处理研究,以减少或消除片状银粉内部的晶体缺陷,改善其微观组织,提高银粉的导电性。结果表明,热处理使塑性形变后的银粉发生回复和再结晶,晶格畸变和晶体缺陷明显减少或者部分去除。  相似文献   

4.
光诱导法制备纳米级片状银粉的研究   总被引:10,自引:2,他引:8  
周全法  李锋  朱雯 《贵金属》2003,24(1):35-38
将银溶胶用适当的保护剂保护后,置于一定波长的可见光下进行辐照可以得到纳米级片状银粉,可见光的辐照时间以及波长和强度等对所得片状银粉的几何特征影响较大,整个光诱导过程可以分为诱导,生长和成熟3个时间段,光诱导法是替代现行球磨法制备片状银粉的可选方法之一,具有较大的发展前景。  相似文献   

5.
超细片状银粉比传统大尺寸银粉可更好地满足电子产品发展需求。对机械球磨法和化学还原法2种制备超细片状银粉方法进行了对比分析。球磨法产率高、成本低,但易引入杂质且技术指标难保持一致;化学法制备的银粉形貌粒径均一性高,但产率低。介绍了化学还原法的技术特点,对其生长机理进行了分析。提出对球磨工艺的深入研究,以及化学法中保持高品质银粉情况下提高反应体系浓度,是超细片状银粉制备技术的研究重点。  相似文献   

6.
采用湿法球磨工艺,通过调整银粉和球的比例、球径大小、球磨时间制备出低松装密度片状银粉.该银粉的松装密度小于1.0 g/cm3,粒径大小可调,粉末的体积和比表面积大,已成功地应用于制备银浆,并可起到降低银含量,提高浆料粘度和导电性能的作用.  相似文献   

7.
提出一种片状银粉的湿化学制备方法。在室温下,搅拌速度为150 r/min时,把FeSO4·7H2O溶液倒入含有柠檬酸的AgNO3溶液中制备银微晶体。采用扫描电镜(SEM)和X射线衍射仪(XRD)对制备的银微晶体进行表征。结果表明:制备的银微晶体主要由大量的不规则形状的片状银粉组成,其尺寸为2~10?m;柠檬酸在片状银粉的形成过程中起关键作用,其用量对片状银粉的形成存在一个最佳值;当体系的还原速率较大时,更有利于片状银粉的形成。  相似文献   

8.
纳米银粉的制备及其应用研究进展   总被引:2,自引:0,他引:2  
本文分类总结了20世纪90年代以来国内纳米片状银粉和球形银粉的制备方法,包括还原球磨法、光诱导法、化学还原法、液相还原法、液-固相还原法、喷雾热分解法、蒸发冷凝法及雾化法等,比较了各种方法的优缺点,展望了纳米银粉制备技术的发展,同时,论述了纳米银粉现有的和潜在的用途.  相似文献   

9.
片状银粉的特性及其电性能   总被引:18,自引:7,他引:11  
谭富彬  赵玲  刘林  李茜 《贵金属》1999,20(2):10-15
系统讨论了片状银粉特性与由它制成的银浆电性能之关系。银浆电性能与片状银粉凇 装密度、比表面积、片状大小不均匀分布及片状厚薄有关。  相似文献   

10.
通过片状银粉与不同尺寸的超细银粉、纳米银粉或球形银粉混合,制备得到不同组合的低温固化银浆。将银浆固化在玻璃上,用扫描电镜(SEM)观测其截面形貌,并测定其电学性能与粘附性能。结果表明以片状银粉1#和类球形银粉4#搭接有助于提高粉体间的致密度,增加组合粉体的接触性能,获得较好的导电通路。在一定银含量范围内银粉有效含量的提高有利于获得较佳的电学导通性能。附着力测试表明经低温固化后聚酯材料对银粉和ITO基材均具有较强粘结力。  相似文献   

11.
微纳米材料的性能受到其形貌的影响,以维度为分类原则,综述了不同类型银微纳米的制备和应用进展。零维的银纳米材料包括银原子和粒径小于15 nm的银纳米粉,主要提高催化性能、抗菌及光性能;一维的银纳米线由化学还原法制备,主要用于透明纳米银线薄膜制备的柔性电子器件;二维的银微纳米片可用球磨法、光诱导法、模板法等方法制备,其在导电浆料及电子元器件等方面有广泛的应用;三维的银微纳米材料包括球形和异形银粉,球形银粉主要用于导电浆料填充物,异形银粉主要应用催化、光学等方面。改善制备方法,实现微纳米材料的形貌控制,提升产物稳定性,是银纳米材料研究的发展方向。  相似文献   

12.
The La doped WC/Co powder was prepared by high energy ball milling. The changes of crystal structure, micrograph and defect of the powder were investigated by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace La element into carbides is effective to minish the grain size of WC/Co powder. The La doped carbides powder with grain size of 30nm can be obtained after 10h ball milling. The XRD peak of Co phase disappeared after 20h ball milling, which indicated solid solution (or secondary solid solution) of Co phase in WC phase. The La doped powder with grain size of 10nm is obtained after 30h ball milling. A peak of heat release at the temperature of 470℃ was emerged in DTA curve within the range of heating temperature, which showed that the crystal structure relaxation of the powder appeared in the process of high energy ball milling. After consolidated the La doped WC/Co alloy by high energy ball milling exhibits  相似文献   

13.
The nano-crystalline rare earth doped WC/Co powder was prepared by high energy ball milling. The nano-crystalline powders were characterized by means of XRD (X-ray diffraction), SEM (scanning electron microscope) and DTA (differential thermal analysis). The results show that adding trace rare earth elements into carbides is effective to minish the grain size of WC/Co powder. The grain size of rare earth doped powder became two times smaller as compared with the undoped powder within ball milling times of 25–45 h. The XRD peak of Co phase disappeared after 25 h ball milling. A sharp peak of heat release at the temperature of 597 °C was emerged in DTA curve within the range of heating temperature. After consolidated the rare earth doped WC/Co alloy by high energy ball milling exhibits ultra-fine grain sizes and better mechanical properties.  相似文献   

14.
超细WC-Co硬质合金的制备与性能研究   总被引:5,自引:4,他引:1  
利用高能球磨法制备纳米级WC-Co混合粉末,采用脉冲电流烧结技术进行烧结。用能谱分析仪(EDX)对球磨后的粉末进行成分分析,用X射线衍射(XRD)对比分析球磨前后WC-Co混合粉末的衍射峰变化,用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对所制备的粉末及烧结材料进行了组织形貌观察,并测定了烧结试样的硬度。结果表明:随着球磨时间的延长,WC-Co纳米粉末的粒度逐渐变小,当球磨时间超过30h后获得了粒度为100nm以下的WC-Co纳米粉末。脉冲电流烧结后获得超细WC-Co硬质合金,与传统的WC-Co硬质合金相比,超细WC-Co硬质合金具有更高的硬度(HRA92.5~94)和耐磨性。另外通过实验获得了最佳的烧结工艺参数。  相似文献   

15.
高能球磨制备纳米CeO2/Al复合粉末   总被引:10,自引:0,他引:10  
采用高能球磨法制备了纳米CeO2/Al复合粉末,并利用X射线衍射(XRD)、场发射显微镜(FEM)、扫描电镜(SEM)以及能谱分析(EDS)等测试分析手段,对球磨过程中复合粉末相结构、组织形貌和成分分布的变化进行了研究。结果表明:随着球磨时间的增加,纳米CeO2团聚体逐渐进入Al颗粒中,并被很好地分散开来,呈均匀弥散分布;Al晶粒尺寸不断细化。  相似文献   

16.
机械合金化制备TiB2-Ni(Al)复合粉末组织结构研究   总被引:2,自引:2,他引:0  
目的通过原位合成技术获得TiB_2-Ni(Al)复合粉末。方法采用机械合金化方法在不同球磨时间的条件下,制备不同体积含量的TiB_2陶瓷相增强Ni(Al)基复合粉末,其中Ni粉和Al粉的摩尔比为1:1。采用扫描电子显微镜(SEM)以及X-射线衍射仪(XRD)分析球磨后粉末的显微组织结构及物相,研究不同球磨时间对制备TiB_2-Ni(Al)复合粉末物相演变、组织结构及粒子间界面结合状态的影响。结果在球磨过程中,球磨时间越长,Ni/Al间的塑变有利于原子之间的扩散,TiB_2陶瓷相颗粒逐渐变小。当球磨时间增长到一定程度时,延展性好的Al粉颗粒发生扁平化且其表面积不断增大,使得碎化后的Ni粉颗粒不断嵌入Al粉颗粒中,最终形成Ni(Al)固溶体。同时根据XRD分析发现,随着球磨时间的延长,TiB_2-Ni(Al)复合粉末中的Al峰逐渐减小,说明Al不断固溶到Ni中,形成了一定量的Ni(Al)固溶体。结论通过机械球磨技术在球磨一定时间后可原位合成Ni(Al)固溶体,这说明随着Ni与Al之间的相互扩散有利于形成Ni(Al)固溶体。  相似文献   

17.
采用物理化学方法制备超细高密度活化钨粉(W-0.1%Ni复合粉末,质量分数),研究球磨时间对活化钨粉形貌及其物理性能的影响,探讨球磨处理对该高密度活化钨粉烧结致密化行为的影响,并与超细纯钨粉末的烧结致密化行为进行对比。结果表明:微量活化元素镍的添加及球磨处理能明显加速钨粉的低温烧结收缩速率,显著促进钨粉的烧结致密化程度;球磨5 h后,活化钨粉在1 600℃下烧结即可达到近全致密化(致密度为99.4%),此外,镍元素的添加和球磨处理也能显著促进钨晶粒的长大。  相似文献   

18.
白小波  陈枭  邓雅雄 《表面技术》2018,47(3):250-255
目的通过机械球磨加粘结破碎法制备可用于超音速火焰喷涂制备MoB-CoCr涂层的Mo-B-Co-Cr复合粉末。方法通过机械球磨加粘结破碎法制备m(MoB):m(CoCr)分别为1:1、2:1和3:1复合粉末,研究所制备的三种复合粉末的组织形貌及物相,并将所制备的m(Mo B):m(CoCr)=1:1复合粉末进行超音速火焰喷涂实验制备MoB-CoCr涂层,研究所制备涂层的组织结构。采用扫描电子显微镜观察粉末和涂层的形貌,通过X-射线衍射仪分析复合粉末的物相,通过图像法测量涂层的平均孔隙率和厚度。结果制备的三种复合粉末各相之间结合良好,组织形态呈近球形。经过X-射线衍射发现,三种复合粉末中未发现杂质及氧化现象,复合粉末的物相主要为Mo、Co和Cr三相,随着MoB质量比的增加,复合粉末中Mo相的峰值逐渐增高。通过对m(MoB):m(CoCr)=1:1复合粉末进行超音速火焰喷涂技术制备涂层,发现所制备的MoB-CoCr涂层形态呈典型的层状结构,涂层组织致密性较好,且涂层各相间及涂层与基体界面结合良好。结论采用机械球磨加粘结破碎法可制备近似球形的Mo-B-Co-Cr复合粉末,通过超音速火焰喷涂技术可成功制备组织结构较好的MoB-CoCr涂层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号