首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
传统的吸波材料无法使天线同时满足工作带外隐身和工作带内透波的特殊要求。文中结合传统吸波材料的吸波特性和频率选择表面的滤波特性,提出了一种超材料的宽带吸波的隐身天线罩。利用超材料的谐振叠加特性,设计出宽带人工吸波结构。采用阻抗匹配技术进一步提高天线在工作频带内的透过率,并提高天线带外的吸收率。通过调节超材料吸波体的尺寸,构造了一种Ku 频带透波、高于Ku 频段吸波的超材料天线罩,在保证天线带内正常通信前提下,可减小天线带外的雷达散射截面,提高机载天线的隐身性能。  相似文献   

2.
提出了一种基于单层透波型阻抗超表面(Transparent Resistive Metasurface, TRM)的电大尺寸天线阵RCS减缩方法。该超表面在垂直极化10 GHz处产生低插损透波窗口,而在其他频点和极化条件下作为有耗阻抗表面,天线阵列在带外频段近似全反射,可以作为接地面实现宽带吸波的RCS减缩。采用国产电磁仿真软件EastWave对"电大尺寸+精细结构"的"天线阵+超表面阵列"进行了全波仿真分析,评估单层透波阻抗超表面对电大尺寸天线阵的RCS减缩及辐射性能的影响。仿真结果表明,在天线阵增益损耗小于1 dB条件下实现同极化下带外频段和交叉极化下全频带的宽带吸波,为大型天线阵隐身设计提供了技术支撑。  相似文献   

3.
该文提出了基于超表面的宽带超低剖面折叠透射阵天线设计方法。该天线由两种超表面阵列和一个作为馈源的开口波导构成。其中,下层超表面能够将馈源发射的线极化入射波转换为交叉极化反射波,上层超表面能够实现特定线极化波的全反射和另一种线极化波的全透射。通过合理设计,该天线能够将辐射电磁波来回反射3次并在较宽频带内实现增益提升,同时其剖面高度能够降至传统透射阵的1/4。天线实测和仿真结果吻合良好,表明3 dB增益带宽达到19.6%(9.2~11.2 GHz),且9.6 GHz处峰值增益达21 dBi,峰值口径效率为30%。该文设计方法为实现宽带低剖面阵列天线设计提供了新思路。  相似文献   

4.
设计一种具有多阻带特性的平面超宽带天线,采用在辐射贴片开C型槽和H型槽的方法实现天线在Wi MAX频段和WLAN频段的带阻抑制特性。U型槽孔产生高于10.6 GHz的高频阻带,同时馈线终端的阶梯结构实现了多频宽带的匹配。该天线在3.16~3.73 GHz,4.63~6.02 GHz以及高于10.6 GHz的超宽带频带内形成阻带,表明其在工作频带内有良好的抗干扰能力。此外,在天线的通带内有良好的全向特性,结果表明该设计方法的有效性。  相似文献   

5.
本文为了实现宽频带强损耗吸收,设计了一种宽频带组合型吸波结构。该结构采用多层电阻膜和介质组合,通过电路谐振设计使其表面阻抗在谐振频率附近很宽的频带内与自由空间阻抗匹配。仿真结果表明:该吸波结构两个极化下3GHz-10GHz频带内吸收效果都在-10dB以上,在6.8GHz左右吸收最好可达-49.9dB。  相似文献   

6.
为将超材料吸波体更好地应用于生产生活中,文中设计了一种基于电流变液的宽带可调超材料吸波体。通过在超材料吸波体中加载电阻器和介电常数电可调的电流变液实现宽带吸收和吸收频带可调。仿真结果表明,吸波体在8.296~15.128 GHz之间的吸收率超过了80%,在11.5~15 GHz之间的吸收率超过了90%,实现了电磁波的宽带吸收。随着电流变液外加电场强度的增加,其吸收频带逐渐往低频发生移动,实现了吸收频带的调控。此外,仿真证实,由于吸波体结构单元具有旋转对称性,其吸收特性具有极化无关性。  相似文献   

7.
纪磊  耿培雲  王兰 《微波学报》2017,33(6):17-20
基于集总型电阻频率选择表面吸波器,设计一款超宽带紧耦合天线阵列。在天线阵列与地板之间加入两层结构集总型电阻频率选择表面吸波器,改变天线与地板之间的传输特性,有效抑制天线短路零点出现,扩展天线带宽;同时利用天线间强耦合效应,减小天线单元结构尺寸。使用集总电阻和金属环构成的吸波器代替常规阻抗型频率选择表面结构,降低天线阵列设计与加工难度,同时可有效改善天线阻抗匹配。仿真实验表明,通过调节集总频率选择表面吸波器物理结构、加载电阻阻值和天线间耦合电容值等参数,当天线单元驻波比小于3 时,可实现带宽范围达12.6:1 (1.5~19 GHz)的超宽带性能;并在2.2~18.3 GHz 范围内具有驻波比小于2 的良好匹配性能。  相似文献   

8.
为满足宽带电磁隐身需求,提出了一种完全覆盖C~Ka波段、部分覆盖S和U波段的超材料吸波体. 吸波体由四层不同方块电阻的方形电阻膜及泡沫介质基板构成,多层电阻膜结构有效地向两侧拓宽了吸收带宽. 为了分析吸波体的电磁吸收机理,建立并分析了该吸波体的精确等效电路模型. 仿真结果表明,在3.16~51.6 GHz(相对带宽为176.9%)工作频带内,对TE和TM波均能实现88%以上的吸收率,并且对入射角度具有稳定性. 制作、加工并测试了超材料吸波体,实测结果与等效电路计算、全波仿真结果均具有较好的一致性,表明该吸波体在电磁隐身领域具有重要的应用价值.  相似文献   

9.
设计了带三角形槽梯形辐射元和阶梯接地面的30 mm×30 mm印制单极超宽带天线原型.实验结果表明,原型天线驻波比小于2的阻抗带宽为2.8 GHz~12.81 GHz,频带内天线具有全向辐射特性,增益变化平坦,相位中心稳定.通过对原型天线振子体的缝隙加载,实现了具有带阻特性的陷波超宽带天线,其驻波比大于3的陷波频带为4.8 GHz~6.0 GHz,陷波频带内最高增益抑制为9 dB,而其他频段性能与原型天线基本一致.  相似文献   

10.
设计了一款具有吸波/透波双重特性的超表面,并将其用于微带天线的覆层,实现天线雷达散射截面(radar cross section, RCS)的宽带减缩. 将传统的结构性吸波材料金属单元用氮化钽材料置换,提升了吸波带宽. 同时,将吸波材料与频率选择表面相结合,实现了覆层对于不同来波方向的电磁波分别呈现吸波/透波两种截然不同的电磁特性. 将覆层置于天线上方,当天线工作时,天线辐射的电磁波可以完美穿过覆层,因此对于天线的辐射特性不会造成影响. 当雷达波照射至天线时,覆层所呈现的宽带吸波特性可最大程度降低天线的RCS. 仿真结果表明:使用本文所设计的吸波/透波超表面作为天线覆层时,天线的辐射特性几乎未发生变化;而天线的单站RCS最大减缩量可达20 dB以上,减缩带宽可达5~19 GHz;同时,天线的单、双站RCS在较宽的角度范围内也得到明显的缩减.  相似文献   

11.
提出了一种基于折合式平面反射阵天线的毫米波高增益滤波天线设计方法,将极化敏感的频率选择表面替代传统的极化栅,用作折合式平面反射阵天线的副反射面.基于基片集成波导技术设计了极化敏感的频率选择表面,该频率选择表面对于线性极化入射波情况下具有较低的插入损耗,同时可几乎全反射对应正交极化的入射波.得益于频率选择表面的频率选择特...  相似文献   

12.
无人机作战飞机(UCAV)快速发展的同时,无人机平台天线的频率选择表面(FSS)技术也得到广泛应用.设计和测试了一种用于无人作战飞机天线隐身的多层频率选择表面,多层频率选择表面通带为K频段,并且有一个很宽的阻带.数值结果和测试结果验证了该频率选择表面的有效性.该设计技术可以广泛应用在今后无人作战飞机天线隐身上,也可以用在其他隐身平台的相关天线设计中.  相似文献   

13.
提出的频率选择性透波吸波(FSTA)复合结构,是一种在保证天线正常工作性能的前提下,实现对带外电磁波吸收的新技术。该技术具有隐身频带宽,自身结构强度强,电子设备电磁兼容特性高等优势。分析了一些典型频率选择表面(FSS)单元的等效电路模型,推导出了FSTA 复合材料的等效电路模型,实现了对新型结构的快速定性分析,并得到结构中各参数对结构性能的作用规律。通过仿真优化实现了低频透波高频吸波(LTHA)型电磁结构的设计。  相似文献   

14.
A monopole antenna having desirable transmission characteristics with high gain is proposed. The monopole antenna comprises 45° tilted square shaped patch and modified rectangular metallic ground plane on FR4 dielectric substrate. The proposed monopole antenna operates from 2.6 GHz to 9.7 GHz with maximum peak gain of 2.3 dBi. Now, a dual-layer aperture-type FSS is designed having a passband from 5.9 GHz to 9.2 GHz and incorporated with the proposed monopole antenna. Thus, the combination only covers the selective frequency band from 5.5 GHz to 8.7 GHz with a stable gain of around 5 dBi. Second, another FSS is designed, which has one stop-band from 4.1 GHz to 5.4 GHz and two passbands on the both sides of this stop-band. This combination does not work from 4.1 GHz to 5.5 GHz but covers dual band from 2.48 GHz to 3.3 GHz with a peak gain of 5 dBi and 5.5 GHz to 10 GHz with a peak gain of 5.5 dBi. Therefore, without modifying the antenna design, any tunable transmission band can be achieved by the proposed combination. The proposed antenna and FSS combination structure may be suitable for military wireless applications for its band selection characteristics.  相似文献   

15.
宽频带宽波束磁电偶极子天线设计   总被引:3,自引:0,他引:3  
为了展宽天线的波束宽度,在磁电(ME)偶极子天线的基础上,该文设计出一种低交叉极化宽频带宽波束的新型磁电偶极子天线。通过将振子倾斜弯折,展宽了天线的波束宽度;结合6个寄生振子的对称加载,提高了辐射方向图的一致性。在型馈电结构基础上,优化天线的振子间距和振子长度,实现了天线58.5%的相对带宽(S11-10 dB),频带范围为2.3~4.2 GHz;对振子倾斜角度以及寄生振子的参数进行优化,在2.4~4.0 GHz的频带内实现了辐射方向图E面和H面同时达到120以上的半功率波束宽度(HPBW)。测试与仿真有较好的一致性,证明了所设计天线不仅具有宽频带宽波束特性,同时在整个频带范围内方向图的一致性得到了极大地提高。  相似文献   

16.
设计了一款微带馈电的超宽带缝隙天线,整体尺寸仅有30 mm×30 mm×1.6 mm,在3.08~11 GHz范围内驻波比小于2,可覆盖超宽带频段.为了实现对WiMAX和WLAN频段的陷波,分别在地板和馈线上蚀刻不同缝隙,仿真结果表明:在3.2~3.7 GHz,5 ~5.9 GHz驻波比大于2,增益显著下降,而在通带内仍然保持良好的全向辐射特性和稳定的增益.该天线结构简单、性能优良,能广泛应用于超宽带通信系统中.  相似文献   

17.
设计了一种具有低雷达截面的超宽带分形槽缝天线。利用"突出角"为90°的Koch分形对方形槽天线进行3次迭代设计后,-10dB阻抗带宽范围由方形槽缝天线的3.0~13.1GHz变为2.8~13.7GHz。仿真和测试结果显示,天线在3GHz和8GHz方向图对称,在整个频段内相对于原天线的增益更稳定,且具有较低的雷达散射截面(RCS)。该天线适用于对超宽带天线具有低RCS要求的场合。  相似文献   

18.
为提高植入式连续血糖监测系统的数据传输能力并增加续航时间,设计了一种用于植入式连续血糖监测装置的双宽频天线。辐射单元和地板的材质采用多层石墨烯薄膜,辐射单元通过内外枝节在辐射单元表面弯折从而延长有效电流路径、降低植入式天线的谐振频率、减小天线尺寸。在地板中间增加一个H 形槽可以调节辐射单元与地板之间的能量耦合,在频段内增加谐振点,产生多频特性。详细分析了辐射贴片枝节宽度、H 形槽接地板、天线表面镀不同生物相容材料、石墨烯材料厚度、植入深度等对天线性能的影响。结果表明,设计的天线具有双频、宽带性能,体积为9 mm×9 mm×0.635 mm,ISM 频段带宽覆盖为831~1015 MHz,WMTS频段带宽覆盖1.37~1.58 GHz,辐射效率和增益特性良好,对植入式连续血糖监测系统既能进行无线能量传输,又能进行数据的遥测遥控。  相似文献   

19.
设计并制作了一种基于双屏FSS(Frequency Selective Surface)部分反射表面的双频高增益微带天线。该FSS 结构是在介质板上下表面分别刻蚀两条方环形金属带,通过调节金属带的宽度,实现频比(Frequency Ratio,FR)达到2 的双频谐振,且在5. 12 ~5. 31GHz 和10. 08 ~10.84GHz 频带内反射相位曲线斜率为正(一般的为负),反射系数模值都在0. 86 和0. 82 以上。将FSS 以覆层的形式放置于双频微带天线上方,相当于增加了双频天线的辐射口径面积,有效改善天线的辐射性能。仿真和实测结果表明:与原始双频微带天线相比,加载双频FSS 覆层后,新天线的增益得到了提高,在5.22GHz 和10. 43GHz 处,天线鼻锥方向增益分别提高了4. 8dB 和5. 1dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号