首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an optical WDM mesh network, different protection schemes (such as dedicated or shared protection) can be used to improve the service availability against network failures. However, in order to satisfy a connections service-availability requirement in a cost-effective and resource-efficient manner, we need a systematic mechanism to select a proper protection scheme for each connection request while provisioning the connection. In this paper, we propose to use connection availability as a metric to provide differentiated protection services in a wavelength-convertible WDM mesh network. We develop a mathematical model to analyze the availabilities of connections with different protection modes (i.e., unprotected, dedicated protected, or shared protected). In the shared-protection case, we investigate how a connection's availability is affected by backup resource sharing. The sharing might cause backup resource contention between several connections when multiple simultaneous (or overlapping) failures occur in the network. Using a continuous-time Markov model, we derive the conditional probability for a connection to acquire backup resources in the presence of backup resource contention. Through this model, we show how the availability of a shared-protected connection can be quantitatively computed. Based on the analytical model, we develop provisioning strategies for a given set of connection demands in which an appropriate, possibly different, level of protection is provided to each connection according to its predefined availability requirement, e.g., 0.999, 0.997. We propose integer linear programming (ILP) and heuristic approaches to provision the connections cost effectively while satisfying the connections' availability requirements. The effectiveness of our provisioning approaches is demonstrated through numerical examples. The proposed provisioning strategies inherently facilitate the service differentiation in optical WDM mesh networks.  相似文献   

2.
Dual-span failures dominate the system unavailability in a mesh-restorable network with full restorability to single-span failures. Traditional availability analysis based on reliability block diagrams is not suitable for survivable networks with shared spare capacity. Therefore, a new concept is proposed to facilitate the calculations of connection availability. A U.S. network consisting of 19 nodes and 28 spans yielding 171 bidirectional connections is investigated. We find that networks with shared backup path protection can have average connection unavailabilities of the same order of magnitude as those with dedicated automatic protection switching, however, with a much better capacity efficiency. The proposed method can exactly calculate the unavailability of a specific connection with known restoration details or the average connection performance without any restoration details by presuming the dual-span failures to be the only failure mode and an arbitrary allocation rule of spare capacity  相似文献   

3.
Internet protocol (IP) traffic connections arrive dynamically at wavelength‐division multiplexing (WDM) network edges with low data rates compared with the wavelength capacity, availability, and quality‐of‐service (QoS) constraints. This paper introduces a scheme to be integrated into the control and management plane of IP/WDM networks to satisfy the availability and QoS required for IP traffic connections bundled onto a single wavelength (lightpath) in WDM networks protected by shared‐backup path protection (SBPP). This scheme consists of two main operations: (i) routing multi‐granular connections and traffic grooming policies, and (ii) providing appropriate shared protection on the basis of subscribers’ service‐level agreements in terms of data rate, availability, and blocking probability. Using the Markov chain process, a probabilistic approach is developed to conceive connection blocking probability models, which can quantify the blocking probability and service utilization of M:N and 1:N SBPP schemes. The proposed scheme and developed mathematical models have been evaluated in terms of bandwidth blocking ratio, availability satisfaction rate, network utilization, and connection blocking probability performance metrics. The obtained research results in this paper provide network operators an operational setting parameter, which controls the allocation of working and backup resources to dynamic IP traffic connections on the basis of their priority and data rate while satisfying their requirements in terms of bandwidth and availability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates a generalized protection framework for availability-guaranteed connection provisioning in an optical wavelength-division-multiplexed (WDM) network. Reliability is a crucial concern in high-speed optical networks. A service level agreement (SLA), which mandates high service availability even in the face of network failures must be met in provisioning a reliable connection. In this study, a new link-state-modeling mechanism is developed to form a dynamic link-state parameter called link and resource availability (LRA), which represents physical-layer availability and resource status for an optical link. Such up-to-date link-state information can be used by a standard link-state routing protocol to efficiently provision reliable connections. Based on the link-state availability model, LRA, a connection-provisioning algorithm is then proposed which can guarantee customers' availability requirements. A new generalized protection model is developed through dynamic LRA-based provisioning. Numerical results demonstrate the performance of the proposed provisioning approach to be promising.  相似文献   

5.
WDM网状网中基于共享风险链路组限制的业务量疏导算法   总被引:2,自引:0,他引:2  
该文研究了业务量疏导WDM网状网中如何建立可靠的业务连接问题,提出一种新的基于共享风险链路组(SRLG)限制的共享通路保护算法。该算法既可以保证用户业务不同的可靠性要求,同时又能够有效提高全网的资源利用率,从而大大降低全网的业务阻塞率。该文还对所提算法进行了仿真研究,并给出了仿真结果。  相似文献   

6.
Hybrid survivability approaches for optical WDM mesh networks   总被引:1,自引:0,他引:1  
This paper studies the problem of providing recovery from link failures in optical wavelength division multiplexing (WDM) networks. One of the widely studied mechanisms is dynamic link restoration, which provides recovery by determining restoration paths around a link after a failure occurs. This mechanism leads to a lower backup resource utilization, fast failure signaling rate, and a scalable operation. However, one of the main drawbacks of uncoordinated dynamic restoration is the inability to provide a 100% recovery for all connections, especially at high network loads. An alternate solution is proactive protection, where backup capacity is reserved during connection setup that can guarantee recovery under certain conditions (e.g., single link failures) but requires higher backup capacity and has low spare capacity utilization when failures do not occur. This paper presents two hybrid survivability approaches that combine the positive effects of restoration and protection. The proposed algorithms make use of available or collected network state information, such as link load, to identify critical links or segments in the network that are then proactively protected. The overall goal of the proposed approaches is to improve the restoration efficiency by providing a tradeoff between proactive protection and dynamic restoration. This paper presents a detailed performance analysis of the proposed algorithms. Experimental results show that under high loads, both the proposed approaches maintain a consistent restoration efficiency of at least 10%, or higher, when compared to the basic restoration scheme.  相似文献   

7.
Survivable WDM mesh networks   总被引:9,自引:0,他引:9  
In a wavelength-division-multiplexing (WDM) optical network, the failure of network elements (e.g., fiber links and cross connects) may cause the failure of several optical channels, thereby leading to large data losses. This study examines different approaches to protect a mesh-based WDM optical network from such failures. These approaches are based on two survivability paradigms: 1) path protection/restoration and 2) link protection/restoration. The study examines the wavelength capacity requirements, and routing and wavelength assignment of primary and backup paths for path and link protection and proposes distributed protocols for path and link restoration. The study also examines the protection-switching time and the restoration time for each of these schemes, and the susceptibility of these schemes to multiple link failures. The numerical results obtained for a representative network topology with random traffic demands demonstrate that there is a tradeoff between the capacity utilization and the susceptibility to multiple link failures. We find that, on one hand, path protection provides significant capacity savings over link protection, and shared protection provides significant savings over dedicated protection; while on the other hand, path protection is more susceptible to multiple link failures than link protection, and shared protection is more susceptible to multiple link failures than dedicated protection. We formulate a model of protection-switching times for the different protection schemes based on a fully distributed control network. We propose distributed control protocols for path and link restoration. Numerical results obtained by simulating these protocols indicate that, for a representative network topology, path restoration has a better restoration efficiency than link restoration, and link restoration has a faster restoration time compared with path restoration.  相似文献   

8.
Spare capacity allocation serves as one of the most critical tasks in dynamic GMPLS networks to meet the stringent network availability constraint stipulated in the SLA of each connection. In this paper, an availability-aware spare capacity reconfiguration scheme based on shared backup path protection (SBPP) is proposed, aiming to guarantee the E2E availability of each LSP. We first provide an E2E availability model for a SBPP connection that is composed of a working and a SRG-disjoint shared backup LSP pair in the presence of all possible single, and dual simultaneous failures. Partial restoration is identified to further improve the capacity efficiency, and achieve finer service differentiation. For this purpose, restoration attempt is defined as a parameter for each connection that can be manipulated at the source node when the spare capacity of each link is scheduled. Based on the developed model, a Linear Program (LP) is formulated to perform inter-arrival spare capacity reconfiguration along each pre-determined shared backup LSP to meet the availability constraint of each connection. Simulation is conducted to verify the derived formulation, and to demonstrate the benefits gained in terms of the spare capacity saving ratio, where the conventional SBPP scheme that achieves 100% restorability for any single failure is taken as a benchmark. We will show that the simulation results validate the proposed E2E availability model, where a significant reduction on the required redundancy can be achieved in the effort of meeting a specific availability constraint for each SBPP connection.   相似文献   

9.
The article first presents a broad overview of the fault management mechanisms involved in deploying a survivable optical mesh network which employs optical crossconnects. We review various protection and restoration schemes, primary and back-up route computation methods, shareability optimization, and dynamic restoration. We then describe different parameters that can measure the quality of service provided by a WDM mesh network to upper protocol layers (e.g., IP network backbones, ATM network backbones, leased lines, virtual private networks), such as service availability, service reliability, restoration time, and service restorability. We review these concepts, the factors that affect them, and how to improve them. In particular, we present a framework for cost-effective availability-aware connection provisioning to provide differentiated services in WDM mesh networks. Through the framework, the more realistic scenario of multiple near-simultaneous failures can be handled. In addition, the emerging problem of protecting low-speed connections of different bandwidth granularities is also reviewed.  相似文献   

10.
针对WDM网络中单链路出错的生存性流量疏导问题,提出了一种基于连接的动态恢复机制(DRAC).DRAC不预留任何资源,当链路出错时,通过在网络中动态的发现资源来对错误进行恢复,将一个出错连接转发到一条新的多跳路径.仿真结果显示,提出的这种动态恢复机制拥有很高的恢复概率.  相似文献   

11.
Resilient optical networks are predominately designed to protect against single failures of fiber links. But in larger networks, operators also see dual failures. As the capacity was planned for single failures, disconnections can occur by dual failures even if enough topological connectivity is provided. In our approach the design of the network minimizes the average loss caused by dual failures, while single failures are still fully survived. High dual failure restorability is the primary aim, capacity is optimized in a second step. For WDM networks with full wavelength conversion, we formulate mixed integer linear programming models for dedicated path protection, shared (backup) path protection, and path rerouting with and without stub-release. For larger problem instances in path rerouting, we propose two heuristics. Computational results indicate that the connectivity is of much more importance for high restorability values than the overall protection capacity. Shared protection has similar restorability levels as dedicated protection while the capacity is comparable to rerouting. Rerouting surpasses the protection mechanisms in restorability and comes close to 100% dual failure survivability. Compared to single failure planning, both shared path protection and rerouting need significantly more capacity in dual failure planning.  相似文献   

12.
In this paper, we study routing and wavelength assignment of connection requests in survivable WDM optical mesh networks employing shared path protection with partial wavelength conversion while 100% restorability is guaranteed against any single failures. We formulate the problem as a linear integer program under a static traffic model. The objective is to minimize the total cost of wavelength-links and wavelength converters used by working paths and protection paths of all connections. A weight factor is used which is defined as the cost ratio of a wavelength converter and a wavelength-link. Depending on the relative cost of bandwidth and wavelength conversion, the optimization objective allows a proper tradeoff between the two. The proposed algorithm, the shortest-widest-path-first (SWPF) algorithm, uses a modified Dijkstra's algorithm to find a working path and a protection path for each connection request in the wavelength graph transformed from the original network topology. When there are multiple candidate paths that have the same minimum total cost, the path along which the maximum number of converters used at each node is minimized is chosen by the SWPF algorithm. We have evaluated the effectiveness of the proposed algorithm via extensive simulation. The results indicate that the performance of the proposed algorithm is very close to that of the optimal solutions obtained by solving the ILP formulation and outperforms existing heuristic algorithms in terms of total number of converters used and the maximum number of converters required at each node in the network. The proposed algorithm also achieves slightly better performance in terms of total cost of wavelength-links and converters used by all connections. We also investigated shared path protection employing converter sharing. The results show that the technique can reduce not only the total number of converters used in the network but also the maximum number of converters required at each node, especially when a large number of converters are needed in the network. In this study, although the ILP formulation is based on static traffic, the proposed algorithm is also applicable to routing dynamic connection requests.  相似文献   

13.
Dynamic Survivability in WDM Mesh Networks Under Dynamic Traffic   总被引:3,自引:0,他引:3  
Network survivability is a crucial requirement in WDM mesh networks. In this paper, we systematically consider the problem of dynamic survivability with dynamic single link failure in WDM networks under dynamic traffic demands. Specifically, we investigate various protection schemes, such as dedicated path protection (DPP), shared path protection (SPP), dedicated link protection (DLP), shared link protection (SLP), and two restoration schemes, path restoration (PR) and link restoration (LR). Moreover, two new shared protection methods are proposed, i.e., SRLG-based shared link protection (SRLG-SLP) and SRLG-based shared path protection (SRLG-SPP). The SRLG (shared risk link group) constraint defines the availability of protection resources to a working path, which requires that any two working paths sharing the same risk of failure (or in the same SRLG) cannot share the same protection resources. Furthermore, in our study, we consider a more practical dynamic single-link failure model, in which the link-failure-interarrival time and link-failure-holding time are considered as two independent parameters. Based on this link-failure model, extensive simulations are done to analyze and compare the dynamic survivable performance of various protection and restoration schemes. Resource utilization, protection efficiency, restoration efficiency, and service disruption ratio are employed as survivable performance metrics versus traffic load, link-failure frequency, and link-failure reparation time to evaluate the survivable performance. Many meaningful results are given. In addition, we show that the developed SRLG-SLP and SRLG-SPP protection schemes perform very well in terms of protection efficiency and service disruption ratio, while sacrificing some performance in terms of resource utilization.  相似文献   

14.
In this paper, the authors focus on studying the problem of survivable routing provisioning to prevent single link failure in wavelength-division-multiplexing (WDM) mesh networks, and propose a novel protection scheme called mixed shared path protection (MSPP). With MSPP, the authors define three types of resources: 1) primary resources that can be used by primary paths; 2) spare resources that can be shared by backup paths; and 3) mixed resources that can be shared by both the primary and the backup paths. In the proposed protection scheme, each connection is assigned a primary path and a link disjoint backup path. Differing from pervious protection schemes, MSPP allows some primary paths and backup paths to share the common mixed resources if the corresponding constraints can be satisfied. In this paper, the authors consider three types of path-based protection schemes, i.e., dedicated path protection (DPP), shared path protection (SPP), and MSPP, and evaluate their performance for both the static and the dynamic provisioning problems. Simulation results show that MSPP outperforms DPP and SPP.  相似文献   

15.
Availability Design of Optical Transport Networks   总被引:1,自引:0,他引:1  
A design technique for reliable optical transport networks is presented. The network is first dimensioned in order to carry a given set of static protected optical connections, each one routed maximizing its availability. The network can be further optimized by minimizing the number of fibers to be installed, while keeping a control on connection availability, which can remain the same or decrease by a prefixed margin factor. Design and optimization algorithms are provided for networks adopting dedicated and shared path-protection. The optimization approach is heuristic. Results obtained by applying the proposed technique to two case-study networks are shown and discussed. These two case-study experiments are carried out exploiting a realistic model to evaluate terrestrial and submarine optical link availability.  相似文献   

16.
In WDM networks, path protection has emerged as a widely accepted technique for providing guaranteed survivability of network traffic. However, it requires allocating resources for backup lightpaths, which remain idle under normal fault-free conditions. In this paper, we introduce a new design strategy for survivable network design, which guarantees survivability of all ongoing connections that requires significantly fewer network resources than protection based techniques. In survivable routing, the goal is to find a Route and Wavelength Assignment (RWA) such that the logical topology remains connected for all single link failures. However, even if the logical topology remains connected after any single link fault, it may not have sufficient capacity to support all the requests for data communication, for all single fault scenarios. To address this deficiency, we have proposed two independent but related problem formulations. To handle our first formulation, we have presented an Integer Linear Program (ILP) that augments the concept of survivable routing by allowing rerouting of sub-wavelength traffic carried on each lightpath and finding an RWA that maximizes the amount of traffic that can be supported by the network in the presence of any single link failure. To handle our second formulation, we have proposed a new design approach that integrates the topology design and the RWA in such a way that the resulting logical topology is able to handle the entire set of traffic requests after any single link failure. For the second problem, we have first presented an ILP formulation for optimally designing a survivable logical topology, and then proposed a heuristic for larger networks. Experimental results demonstrate that this new approach is able to provide guaranteed bandwidth, and is much more efficient in terms of resource utilization, compared to both dedicated and shared path protection schemes.  相似文献   

17.
Most research to date in survivable optical network design and operation, focused on the failure of a single component such as a link or a node. A double-link failure model in which any two links in the network may fail in an arbitrary order was proposed recently in literature [1]. Three loop-back methods of recovering from double-link failures were also presented. The basic idea behind these methods is to pre-compute two backup paths for each link on the primary paths and reserve resources on these paths. Compared to protection methods for single-link failure model, the protection methods for double-link failure model require much more spare capacity. Reserving dedicated resources on every backup path at the time of establishing primary path itself would consume excessive resources. Moreover, it may not be possible to allocate dedicated resources on each of two backup paths around each link, due to the wavelength continuous constraint. In M. Sridharan et al., [2,3] we captured the various operational phases in survivable WDM networks as a single integer programming based (ILP) optimization problem. In this work, we extend our optimization framework to include double-link failures. We use the double-link failure recovery methods available in literature, employ backup multiplexing schemes to optimize capacity utilization, and provide 100% protection guarantee for double-link failure recovery. We develop rules to identify scenarios when capacity sharing among interacting demand sets is possible. Our results indicate that for the double-link failure recovery methods, the shared-link protection scheme provides 10–15% savings in capacity utilization over the dedicated link protection scheme which reserves dedicated capacity on two backup paths for each link. We provide a way of adapting the heuristic based double-link failure recovery methods into a mathematical framework, and use techniques to improve wavelength utilization for optimal capacity usage.  相似文献   

18.
Connection availability is considered as a critical metric when providing differentiated services in Wavelength‐Division Multiplexing mesh networks. Indeed, one of the major concerns of optical network operators is related to improving the availability of services provided to their highest‐class clients. Achieving this objective is possible through managing faults using the different classical protection schemes, namely the so‐called dedicated and shared protection schemes. However, the majority of the work concerning protection schemes has considered the primary connections as equally important when contending for the use of the backup resources. As a main contribution in this paper, we therefore propose an improvement of the existing protection schemes through the introduction of relative priorities among the different primary connections contending for the access to the protection path. To evaluate numerically the benefits of the service differentiation feature introduced in our proposal, we first develop a mathematical model, based on which we derive explicit expressions for the average connection availabilities that result from both the classical protection schemes and the proposed priority‐aware one. Through this model, we show how the availability of the highest‐class clients is improved when deploying the proposed priority‐aware protection scheme. Finally, with the same objective in mind, we develop a simulation study, where a given set of connection demands with predefined availability requirements is provisioned using different protection strategies. Through this study, we show that the priority‐aware protection strategy satisfies service‐availability requirements in a cost‐effective manner compared with the classical protection schemes.Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Protection cycles in mesh WDM networks   总被引:4,自引:0,他引:4  
A fault recovery system that is fast and reliable is essential to today's networks, as it can be used to minimize the impact of the fault on the operation of the network and the services it provides. This paper proposes a methodology for performing automatic protection switching (APS) in optical networks with arbitrary mesh topologies in order to protect the network from fiber link failures. All fiber links interconnecting the optical switches are assumed to be bidirectional. In the scenario considered, the layout of the protection fibers and the setup of the protection switches is implemented in nonreal time, during the setup of the network. When a fiber link fails, the connections that use that link are automatically restored and their signals are routed to their original destination using the protection fibers and protection switches. The protection process proposed is fast, distributed, and autonomous. It restores the network in real time, without relying on a central manager or a centralized database. It is also independent of the topology and the connection state of the network at the time of the failure.  相似文献   

20.
A resource-efficient provisioning framework (RPF) is proposed in this paper for optical networks providing dedicated path protection (DPP) and shared path protection (SPP) services. The framework reduces resource consumption by considering spare capacity reservation of DPP and SPP cooperatively while provides 100% survivability guarantee and maintains the recovery time for both protection types against the predominant single link failures. To tackle the service provisioning problem under the framework, an integer linear programming (ILP) formulation is presented to find the optimal routing solution for a given set of traffic demands. The objective is to minimize total capacities consumed by working and backup paths of all demands. Then, heuristics are developed for on-line routing under dynamic change of traffic. Numerical results show that compared with traditional provisioning framework (TPF), the RPF has the following advantages: 1) Over 10% capacity savings are achieved for static service provisioning; 2) blocking probability of both protection types is greatly reduced; 3) lower resource overbuild is achieved; and 4) average backup-path hop distance of shared-path-protected flows is reduced. Finally, network survivability in face of double link failures is discussed under the framework.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号