首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Pursuit of advanced batteries with high‐energy density is one of the eternal goals for electrochemists. Over the past decades, lithium–sulfur batteries (LSBs) have gained world‐wide popularity due to their high theoretical energy density and cost effectiveness. However, their road to the market is still full of thorns. Apart from the poor electronic conductivity of sulfur‐based cathodes, LSBs involve special multielectron reaction mechanisms associated with active soluble lithium polysulfides intermediates. Accordingly, the electrode design and fabrication protocols of LSBs are different from those of traditional lithium ion batteries. This review is aimed at discussing the electrode design/fabrication protocols of LSBs, especially the current problems on various sulfur‐based cathodes (such as S, Li2S, Li2Sx catholyte, organopolysulfides) and corresponding solutions. Different fabrication methods of sulfur‐based cathodes are introduced and their corresponding bullet points to achieve high‐quality cathodes are highlighted. In addition, the challenges and solutions of sulfur‐based cathodes including active material content, mass loading, conductive agent/binder, compaction density, electrolyte/sulfur ratio, and current collector are summarized and rational strategies are refined to address these issues. Finally, the future prospects on sulfur‐based cathodes and LSBs are proposed.  相似文献   

2.
Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm?2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm?2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.  相似文献   

3.
Designing an appropriate cathode is still a challenge for lithium–sulfur batteries (LSBs) to overcome the polysulfides shuttling and sluggish redox reactions. Herein, 2D siloxene nanosheets are developed by a rational wet‐chemistry exfoliation approach, from which S@siloxene@graphene (Si/G) hybrids are constructed as cathodes in Li‐S cells. The siloxene possesses corrugated 2D Si backbone with abundant O grafted in Si6 rings and hydroxyl‐functionalized surface, which can effectively intercept polysulfides via synergistic effects of chemical trapping capability and kinetically enhanced polysulfides conversion. Theoretical analysis further reveals that siloxene can significantly elevate the adsorption energies and lower energy barrier for Li+ diffusion. The LSBs assembled with 2D Si/G hybrid cathodes exhibit greatly enhanced rate performance (919, 759, and 646 mAh g?1 at 4 C with sulfur loading of 1, 2.9, and 4.2 mg cm?2, respectively) and superb durability (demonstrated by 1000 cycles with an initial capacity of 951 mAh g?1 and negligible 0.032% decay rate at 1 C with sulfur loading of 4.2 mg cm?2). It is expected that the study presented here may open up a new vision toward developing high‐performance LSBs with siloxene for practical applications.  相似文献   

4.
Construction of high efficiency and stable Li metal anodes is extremely vital to the breakthrough of Li metal batteries. In this study, for the first time, groundbreaking in situ plasma interphase engineering is reported to construct high-quality lithium halides-dominated solid electrolyte interphase layer on Li metal to stabilize & protect the anode. Typically, SF6 plasma-induced sulfured and fluorinated interphase (SFI) is composed of LiF and Li2S, interwoven with each other to form a consecutive solid electrolyte interphase. Simultaneously, brand-new vertical Co fibers (diameter: ≈5 µm) scaffold is designed via a facile magnetic-field-assisted hydrothermal method to collaborate with plasma-enhanced Li metal anodes (SFI@Li/Co). The Co fibers scaffold accommodates active Li with mechanical integrity and decreases local current density with good lithiophilicity and low geometric tortuosity, supported by DFT calculations and COMSOL Multiphysics simulation. Consequently, the assembled symmetric cells with SFI@Li/Co anodes exhibit superior stability over 525 h with a small voltage hysteresis (125 mV at 5 mA cm−2) and improved Coulombic efficiency (99.7%), much better than the counterparts. Enhanced electrochemical performance is also demonstrated in full cells with commercial cathodes and SFI@Li/Co anode. The research offers a new route to develop advanced alkali metal anodes for energy storage.  相似文献   

5.
Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I2) batteries are regarded as promising candidates for large-scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I2 batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high-performance Na–S/Se/I2 batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high-energy rechargeable batteries are provided.  相似文献   

6.
Although batteries fitted with sodium metal anodes and sulfur cathodes are attractive for their higher energy density and lower cost, the threat of polysulfide migration in organic liquid electrolytes, uncontrollable dendrites, and corresponding safety issues has locked the deployment of the battery system. Introduction of solid-state electrolytes to replace conventional liquid-based electrolytes has been considered an effective approach to address these issues and further render solid-state sodium-sulfur battery (SSSSB) systems with higher safety and improved energy density. Nevertheless, the practical applications of SSSSB are still hampered by grand challenges, such as poor interfacial contact, sluggish redox kinetics of sulfur conversion, and Na dendrites. Currently, various strategies have been proposed and utilized to negate the problems within the solid-state battery. Herein, a timely and comprehensive review of emerging strategies to promote the development of SSSSB is presented. The critical challenges that prevent the real application of the SSSSB technique are analyzed initially. Subsequently, various strategies for boosting the development of SSSSB are comprehensively summarized, containing the developing of the advanced cathode and cathode/electrolyte interface, tailoring the solid electrolyte, and designing the stable anode and anode/electrolyte interface. Finally, further perspectives on stimulating the practical application of SSSSB technology are provided.  相似文献   

7.
The imperative to electrify the transport sector in the past few decades has put millions of electric vehicles on the road worldwide with an extended mile range from critical technological breakthroughs in developing the rechargeable energy storage systems, which also covers electronic devices and smart grid applications. However, the available energy density of prevailing systems in the market (i.e., batteries) is reaching its boundaries due to the limited choice of electrochemical reactions that necessarily depend on the thermodynamics and kinetics of the components (e.g., cathode, anode, electrolyte, separator, and current collectors). Reaching the high energy density of batteries exploits new redox chemistry such as sensitive metal anodes, insulating and highly dissolving sulfur cathodes, etc., thus requiring novel designs of various multiscale functional materials to address the corresponding issues. Here, the recent achievements on the designs of smart functional materials for emerging problems in the whole range of systems are discussed: i) interfacial control/kinetic regulation of Li–S battery; ii) self‐healing‐driven structural stability in the electrode and electrolyte; iii) ion‐sieving functional membranes for selective scavenging capability; and iv) functional materials to ensure battery safety.  相似文献   

8.
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium‐sulfur (Li‐S) batteries. In this paper, a mesoporous nitrogen‐doped carbon (MPNC)‐sulfur nanocomposite is reported as a novel cathode for advanced Li‐S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verified by X‐ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC‐sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm‐2 with a high sulfur loading (4.2 mg S cm‐2) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm‐2) is demonstrated by using the novel cathode, which is crucial for the practical application of Li‐S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon‐sulfur composite cathodes for Li‐S batteries.  相似文献   

9.
Lithium–sulfur batteries (LSBs) are feasible candidates for the next generation of energy storage devices, but the shuttle effect of lithium polysulfides (LiPSs) and the poor electrical conductivity of sulfur and lithium sulfides limit their application. Herein, a sulfur host based on nitrogen-doped carbon (NC) coated with small amount of a transition metal telluride (TMT) catalyst is proposed to overcome these limitations. The properties of the sulfur redox catalyst are tuned by adjusting the anion vacancy concentration and engineering a ZnTe/CoTe2 heterostructures. Theoretical calculations and experimental data demonstrate that tellurium vacancies enhance the adsorption of LiPSs, while the formed TMT/TMT and TMT/C heterostructures as well as the overall architecture of the composite simultaneously provide high Li+ diffusion and fast electron transport. As a result, v-ZnTe/CoTe2@NC/S sulfur cathodes show excellent initial capacities up to 1608 mA h g−1 at 0.1C and stable cycling with an average capacity decay rate of 0.022% per cycle at 1C during 500 cycles. Even at a high sulfur loading of 5.4 mg cm–2, a high capacity of 1273 mA h g−1 at 0.1C is retained, and when reducing the electrolyte to 7.5 µL mg−1, v-ZnTe/CoTe2@NC/S still maintains a capacity of 890.8 mA h g−1 after 100 cycles at 0.1C.  相似文献   

10.
The application of lithium–sulfur batteries (LSBs) is immensely impeded by notorious shuttle effect, sluggish redox kinetics, and irregular Li2S deposition, which result in large polarization and rapid capacity decay. To obtain the LSBs with high energy density and fast reaction kinetics, herein, a heterostructure composed by nitrogen-deficient graphitic carbon nitride (ND-g-C3N4) and MgNCN is fabricated via a magnesiothermic denitriding technology. Lithophilic C3N4 with abundant nitrogen-deficient acts as a conductive framework, together with the sulfiphilic MgNCN, lithium-polysulfides (LiPSs) can be effectively captured followed by a regulated Li2S nucleation. Furthermore, the oxidation conversion kinetics can be accelerated as well. As expected, the LSBs with catalytic MgNCN/ND-g-C3N4 as the interlayer exhibit remarkable electrochemical performance with a discharge capacity of 650 mAh g−1 at 4 C. Meanwhile, a low capacity decay of 0.008% per cycle can be reached at 1 C after 400 cycles. Even with a high areal sulfur loading of 5.1 mg cm−2, outstanding capacity retention can be achieved at 0.5 C (64.18%) and 1 C (90.46%). The presented strategy unlocks a new way for the LSBs design with highly efficient catalyst.  相似文献   

11.
Using high‐capacity and metallic Li‐free lithium sulfide (Li2S) cathodes offers an alternative solution to address serious safety risks and performance decay caused by uncontrolled dendrite hazards of Li metal anodes in next‐generation Li metal batteries. Practical applications of such a cathode, however, still suffer from low redox activity, unaffordable cost, and poor processability of infusible and moisture‐sensitive Li2S. Herein, these difficulties are addressed by developing a molecular cage–engaged strategy that enables low‐cost production and interfacial engineering of Li2S cathodes for rechargeable Li2S//Si cells. An efficient chemisorption–electrocatalytic interface is built in extremely nanostructured Li2S cathodes by harnessing the confinement/separation effect of metal–organic molecular cages on ionic clusters of air‐stable, soluble, and low‐cost Li salt and their chemical transformation. It effectively boosts the redox activity toward Li2S activation/dissociation and polysulfide chemisorption–conversion in Li‐S batteries, leading to low activation voltage barrier, stable cycle life of 1000 cycles, ultrafast current rate up to 8 C, and high areal capacities of Li2S cathodes with high mass loading. Encouragingly, this highly active Li2S cathode can be applied for constructing truly workable Li2S//Si cells with a high specific energy of 673 Wh kg?1 and stable performance for 200 cycles at high rates against hollow nanostructured Si anode.  相似文献   

12.
The theoretically high-energy-density lithium–sulfur batteries (LSBs) are seriously limited by the disadvantages including the shuttle effect of soluble lithium polysulfides (LiPSs) and the sluggish sulfur redox kinetics, especially for the most difficult solid–solid conversion of Li2S2 to Li2S. Herein, a multifunctional catalytic interlayer to improve the performance of LSBs is tried to introduce, in which Fe1–xS/Fe3C nanoparticles are embedded in the N/S dual-doped carbon network (NSC) composed by nanosheets and nanotubes (the final product is named as FeSC@NSC). The well-designed 3D NSC network endows the interlayer with a satisfactory LiPSs capture-catalytic ability, thus ensuring fast redox reaction kinetics and suppressing LiPSs shuttling. The density functional theory calculations disclose the catalytic mechanisms that FeSC@NSC greatly improves the liquid–solid (LiPSs to Li2S2) conversion and unexpectedly the solid–solid (Li2S2 to Li2S) one. As a result, the LSBs based on the FeSC@NSC interlayer can achieve a high specific capacity of 1118 mAh g−1 at a current density of 0.2 C, and a relatively stable capacity of 415 mAh g−1 at a large current density of 2.0 C after 700 cycles as well as superior rate performance.  相似文献   

13.
Nonuniform local electric field and few nucleation sites on the reactive interface tend to cause detrimental lithium (Li) dendrites, which incur severe safety hazards and hamper the practical application of Li metal anodes in batteries. Herein, a carbon nanofiber (CNF) mat decorated with ultrafine titanium nitride (TiN) nanoparticles (CNF‐TiN) as both current collector and host material is reported for Li metal anodes. Uniform Li deposition is achieved by a synergetic effect of lithiophilic TiN and 3D CNF configuration with a highly conductive network. Theoretical calculations reveal that Li prefers to be adsorbed onto the TiN sheath with a low diffusion energy barrier, leading to controllable nucleation sites and dendrite‐free Li deposits. Moreover, the pseudocapacitive behavior of TiN identified through kinetics analysis is favorable for ultrafast Li+ storage and the charge transfer process, especially under a high plating/stripping rate. The CNF‐TiN‐modified Li anodes deliver lower nucleation overpotential for Li plating and superior electrochemical performance under a large current density (200 cycles at 3 mA cm?2) and high capacity (100 cycles with 6 mAh cm?2), as well as a long‐running lifespan (>600 h). The CNF‐TiN‐based full cells using lithium iron phosphate and sulfur cathodes exhibit excellent cycling stability.  相似文献   

14.
Aqueous rechargeable zinc batteries (ARZBs) are recently prevailing devices that utilize the abundant Zn resources and the merits of aqueous electrolytes to become a competitive alternative for large-scale energy storage. Benefiting from the unique inductive effect and flexible structure, the past five years have experienced a diversiform of phosphate-based polyanion materials that are used as cathodes in ARZBs. In this review, the most recent advances in the Zn2+ storage mechanisms and electrolyte optimization of the phosphate-based cathodes of ARZBs, which mainly focus on vanadium/iron-based phosphates and their derivatives are presented. Furthermore, in addition to significant progress on polyanion phosphate-based cathode materials, the design strategies both for electrode materials and compatible electrolytes are also elaborated to improve the energy density and extend the cycling life of aqueous Zn/polyanion batteries.  相似文献   

15.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

16.
Lithium–sulfur batteries (LSBs) are regarded as a new kind of energy storage device due to their remarkable theoretical energy density. However, some issues, such as the low conductivity and the large volume variation of sulfur, as well as the formation of polysulfides during cycling, are yet to be addressed before LSBs can become an actual reality. Here, presented is a comprehensive overview illustrating the techniques capable of mitigating these undesirable problems together with the electrochemical performances associated to the different proposed solutions. In particular, the analysis is organized by separately addressing cathode, anode, separator, and electrolyte. Furthermore, to better understand the chemistry and failure mechanisms of LSBs, important characterization techniques applied to energy storage systems are reviewed. Similarly, considerations on the theoretical approaches used in the energy storage field are provided, as they can become the key tool for the design of the next generation LSBs. Afterward, the state of the art of LSBs technology is presented from a geopolitical perspective by comparing the results achieved in this field by the main world actors, namely Asia, North America, and Europe. Finally, this review is concluded with the application status of LSBs technology, and its prospects are offered.  相似文献   

17.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

18.
Lithium–sulfur battery possesses a high energy density; however, its application is severely blocked by several bottlenecks, including the serious shuttling behavior and sluggish redox kinetics of sulfur cathode, especially under the condition of high sulfur loading and lean electrolyte. Herein, hollow molybdate (CoMoO4, NiMoO4, and MnMoO4) microspheres are introduced as catalytic hosts to address these issues. The molybdates present a high intrinsic electrocatalytic activity for the conversion of soluble lithium polysulfides, and the unique hollow spherical structure could provide abundant sites and spatial confinement for electrocatalysis and inhibiting shuttling, respectively. Meanwhile, it is demonstrated that the unique adsorption of molybdates toward polysulfides exhibits a “volcano-type” feature with the catalytic performance following the Sabatier principle. The NiMoO4 hollow microspheres with moderate adsorption show the highest electrocatalytic activity, which is favorable for enhancing the electrochemical performance of sulfur cathode. Especially, the S/NiMoO4 composite could achieve a high areal capacity of 7.41 mAh cm−2 (906.2 mAh g−1) under high sulfur loading (8.18 mg cm−2) and low electrolyte/sulfur ratio (E/S, 4 µL mg−1). This work offers a new perspective on searching accurate rules for selecting and designing effective host materials in the lithium–sulfur battery.  相似文献   

19.
The application of Li‐S batteries is hindered by low sulfur utilization and rapid capacity decay originating from slow electrochemical kinetics of polysulfide transformation to Li2S at the second discharge plateau around 2.1 V and harsh shuttling effects for high‐S‐loading cathodes. Herein, a cobalt‐doped SnS2 anchored on N‐doped carbon nanotube (NCNT@Co‐SnS2) substrate is rationally designed as both a polysulfide shield to mitigate the shuttling effects and an electrocatalyst to improve the interconversion kinetics from polysulfides to Li2S. As a result, high‐S‐loading cathodes are demonstrated to achieve good cycling stability with high sulfur utilization. It is shown that Co‐doping plays an important role in realizing high initial capacity and good capacity retention for Li‐S batteries. The S/NCNT@Co‐SnS2 cell (3 mg cm?2 sulfur loading) delivers a high initial specific capacity of 1337.1 mA h g?1 (excluding the Co‐SnS2 capacity contribution) and 1004.3 mA h g?1 after 100 cycles at a current density of 1.3 mA cm?2, while the counterpart cell (S/NCNT@SnS2) only shows an initial capacity of 1074.7 and 843 mA h g?1 at the 100th cycle. The synergy effect of polysulfide confinement and catalyzed polysulfide conversion provides an effective strategy in improving the electrochemical performance for high‐sulfur‐loading Li‐S batteries.  相似文献   

20.
Lithium–metal fluoride (MF) batteries offer the highest theoretical energy density, exceeding that of the sulfur–lithium cells. However, conversion‐type MF cathodes suffer from high resistance, small capacity utilization at room temperature, irreversible structural changes, and rapid capacity fading with cycling. In this study, the successful application of the approach to overcome such limitations and dramatically enhance electrochemical performance of Li–MF cells is reported. By using iron fluoride (FeF2) as an example, Li–MF cells capable of achieving near‐theoretical capacity utilization are shown when MF is infiltrated into the carbon mesopores. Most importantly, the ability of electrolytes based on the lithium bis(fluorosulfonyl)imide (LiFSI) salt is presented to successfully prevent the cathode dissolution and leaching via in situ formation of a Li ion permeable protective surface layer. This layer forms as a result of electrolyte reduction/oxidation reactions during the first cycle of the conversion reaction, thus minimizing the capacity losses during cycling. Postmortem analysis shows the absence of Li dendrites, which is important for safer use of Li metal anodes. As a result, Li–FeF2 cells demonstrate over 1000 stable cycles. Quantum chemistry calculations and postmortem analysis provide insights into the mechanisms of the passivation layer formation and the performance boost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号