首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na superionic conductor of Na3MnTi(PO4)3 only containing high earth-abundance elements is regarded as one of the most promising cathodes for the applicable Na-ion batteries due to its desirable cycling stability and high safety. However, the voltage hysteresis caused by Mn2+ ions resided in Na+ vacancies has led to significant capacity loss associated with Mn reaction centers between 2.5–4.2 V. Herein, the sodium excess strategy based on charge compensation is applied to suppress the undesirable voltage hysteresis, thereby achieving sufficient utilization of the Mn2+/Mn3+ and Mn3+/Mn4+ redox couples. These findings indicate that the sodium excess Na3.5MnTi0.5Ti0.5(PO4)3 cathode with Ti4+ reduction has a lowest Mn2+ occupation on the Na+ vacancies in its initial composition, which can improve the kinetics properties, finally contributing to a suppressed voltage hysteresis. Based on these findings, it is further applied the sodium excess route on a Mn-richer phosphate cathode, which enables the suppressed voltage hysteresis and more reversible capacity. Consequently, this developed Na3.6Mn1.15Ti0.85(PO4)3 cathode achieved a high energy density over 380 Wh kg−1 (based on active substance mass of cathode) in full-cell configurations, which is not only superior to most of the phosphate cathodes, but also delivers more application potential than the typical oxides cathodes for Na-ion batteries.  相似文献   

2.
Layered transition metal oxides (TMOs) are appealing cathode candidates for sodium‐ion batteries (SIBs) by virtue of their facile 2D Na+ diffusion paths and high theoretical capacities but suffer from poor cycling stability. Herein, taking P2‐type Na2/3Ni1/3Mn2/3O2 as an example, it is demonstrated that the hierarchical engineering of porous nanofibers assembled by nanoparticles can effectively boost the reaction kinetics and stabilize the structure. The P2‐Na2/3Ni1/3Mn2/3O2 nanofibers exhibit exceptional rate capability (166.7 mA h g?1 at 0.1 C with 73.4 mA h g?1 at 20 C) and significantly improved cycle life (≈81% capacity retention after 500 cycles) as cathode materials for SIBs. The highly reversible structure evolution and Ni/Mn valence change during sodium insertion/extraction are verified by in operando X‐ray diffraction and ex situ X‐ray photoelectron spectroscopy, respectively. The facilitated electrode process kinetics are demonstrated by an additional study using the electrochemical measurements and density functional theory computations. More impressively, the prototype Na‐ion full battery built with a Na2/3Ni1/3Mn2/3O2 nanofibers cathode and hard carbon anode delivers a promising energy density of 212.5 Wh kg?1. The concept of designing a fibrous framework composed of small nanograins offers a new and generally applicable strategy for enhancing the Na‐storage performance of layered TMO cathode materials.  相似文献   

3.
Sodium manganese oxides as promising cathode materials for sodium-ion batteries (SIBs) have attracted interest owing to their abundant resources and potential low cost. However, their practical application is hindered due to the manganese disproportionation associated with Mn3+, resulting in rapid capacity decline and poor rate capability. Herein, a Li-substituted, tunnel/spinel heterostructured cathode is successfully synthesized for addressing these limitations. The Li dopant acts as a pillar inhibiting unfavorable multiphase transformation, improving the structural reversibility, and sodium storage performance of the cathode. Meanwhile, the tunnel/spinel heterostructure provides 3D Na+ diffusion channels to effectively enhance the redox reaction kinetics. The optimized [Na0.396Li0.044][Mn0.97Li0.03]O2 composite delivers an excellent rate performance with a reversible capacity of 97.0 mA h g–1 at 15 C, corresponding to 82.5% of the capacity at 0.1 C, and a promising cycling stability over 1200 cycles with remarkable capacity retention of 81.0% at 10 C. Moreover, by combining with hard carbon anodes, the full cell demonstrates a high specific capacity and favorable cyclability. After 200 cycles, the cell provides 105.0 mA h g–1 at 1 C, demonstrating the potential of the cathode for practical applications. This strategy might apply to other sodium-deficient cathode materials and inform their strategic design.  相似文献   

4.
The anode materials for sodium-ion batteries (SIBs) such as soft carbon, hard carbon, or alloys suffer from low specific capacity, poor rate capability, and high cost. Various transition metal oxides materials possess high specific capacity and suitable working potential, however, huge volume change and unstable electrode/electrolyte interfaces limit their practical applications. Herein, an ultrathin carbon-coated iron-based borate, (Fe3BO5), as an anode material for SIBs is reported. The carbon coated Fe3BO5 composite as an anode material possesses a reversible specific capacity of 548 mAh g−1 with a high initial coulombic efficiency of 72.6% at a current density of 50 mA g−1, and maintains a capacity retention ratio of 99% after 1000 cycles at 2000 mA g−1. Moreover, this anode can work well over a wide temperature range (-40–60 °C). Furthermore, a sodium-ion full cell using this anode coupling with iron-based cathode (Na3Fe2(PO4)2(P2O7)@rGO) cathode is fabricated, which exhibits a wide operating temperature range from −40 to 60 °C with a maximum energy density of 175 Wh Kg−1 and a maximum power density of 1680 W Kg−1. Most importantly, this full-cell configuration is low-cost due to its inexpensive iron based raw material for both anode and cathode.  相似文献   

5.
Herein, Ti4+ in P′2‐Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 is proposed as a new strategy for optimization of Mn‐based cathode materials for sodium‐ion batteries, which enables a single phase reaction during de‐/sodiation. The approach is to utilize the stronger Ti–O bond in the transition metal layers that can suppress the movements of Mn–O and Fe–O by sharing the oxygen with Ti by the sequence of Mn–O–Ti–O–Fe. It delivers a discharge capacity of ≈180 mAh g?1 over 200 cycles (86% retention), with S‐shaped smooth charge–discharge curves associated with a small volume change during cycling. The single phase reaction with a small volume change is further confirmed by operando synchrotron X‐ray diffraction. The low activation barrier energy of ≈541 meV for Na+ diffusion is predicted using first‐principles calculations. As a result, Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 can deliver a high reversible capacity of ≈153 mAh g?1 even at 5C (1.3 A g?1), which corresponds to ≈85% of the capacity at 0.1C (26 mA g?1). The nature of the sodium storage mechanism governing the ultrahigh electrode performance in a full cell with a hard carbon anode is elucidated, revealing the excellent cyclability and good retention (≈80%) for 500 cycles (111 mAh g?1) at 5C (1.3 A g?1).  相似文献   

6.
Electrode dissolution/collapses and interfacial reactions pose challenges to batteries, leading to pronounced capacity loss particularly during the initial few cycles. As high-capacity conversion/alloying anodes for sodium storage, metal sulfides generally show unsatisfactory performances like poor initial Coulombic efficiency (ICE; mostly <70% in the usual electrolyte) and inferior cyclic stability due to thick solid-electrolyte interface (SEI) layer formation and ubiquitous volume/phase changes. Using SnS2 as an example, here, sulfides are elaborately encapsulated into functionalized amorphous tridymite/carbon reactors to address the above issues. The outer tridymite/carbon manifests good ionic permeability and superb electrochemical/mechanical tolerance against destructive Na+ insertion. Confining actives into tailored reactors endows SnS2 full of nanoboundaries with an ultrahigh ICE of ≈89.13% and remarkable electrochemical attributes including large initial capacity (Max. 733.24 mAh g−1), prominent stability in subsequent cycles, and excellent rate capability. Detailed investigation unveils that thin and steady SEI condition on tridymite/carbon rather than SnS2 is key to achieving outstanding ICE. Engineered reactors always keep intact and free of valence-state changes, guaranteeing capacities running at a high level without an evident downtrend. Their peculiar functions on enlisting Na+ diffusion/transport and inhibiting sulfides’ release are also discussed. Packed full-cell Na-ion batteries with less irreversibility may show great potential in practical utilizations.  相似文献   

7.
Na‐ion batteries have experienced rapid development over the past decade and received significant attention from the academic and industrial communities. Although a large amount of effort has been made on material innovations, accessible design strategies on peculiar structural chemistry remain elusive. An approach to in situ construction of new Na‐based cathode materials by substitution in alkali sites is proposed to realize long‐term cycling stability and high‐energy density in low‐cost Na‐ion cathodes. A new compound, [K0.444(1)Na1.414(1)][Mn3/4Fe5/4](CN)6, is obtained through a rational control of K+ content from electrochemical reaction. Results demonstrate that the remaining K+ (≈0.444 mol per unit) in the host matrix can stabilize the intrinsic K‐based structure during reversible Na+ extraction/insertion process without the structural evolution to the Na‐based structure after cycles. Thereby, the as‐prepared cathode shows the remarkably enhanced structural stability with the capacity retention of >78% after 1800 cycles, and a higher average operation voltage of ≈3.65 V versus Na+/Na, directly contrasting the non‐alkali‐site‐substitution cathode materials. This provides new insights into alkali‐site‐substitution constructing advanced Na‐ion cathode materials.  相似文献   

8.
Na4Fe3(PO4)2(P2O7) (NFPP) is considered as a promising cathode material for sodium-ion batteries (SIBs) due to its low cost, non-toxicity, and high structural stability, but its electrochemical performance is limited by the poor electronic conductivity. In this study, Mg-doped NFPP/C composites are presented as cathode materials for SIBs. Benefiting from the enhanced electrochemical kinetics and intercalation pseudocapacitance resulted from the Mg doping, the optimal Mg-doped NFPP/C composite (NFPP-Mg5%) delivers high rate performance (capacity of ≈40 mAh g−1 at 20 A g−1) and ultra-long cycling life (14 000 cycles at 5 A g−1 with capacity retention of 80.8%). Moreover, the in situ X-ray diffraction and other characterizations reveal that the sodium storage process of NFPP-Mg5% is dominated by the intercalation pseudocapacitive mechanism. In addition, the full SIB based on NFPP-Mg5% cathode and hard carbon anode exhibits the discharge capacity of ≈50 mAh g−1 after 200 cycles at 500 mA g−1. This study demonstrates the feasibility of improving the electrochemical performance of NFPP by doping strategy and presents a low-cost, ultra-stable, and high-rate cathode material for SIBs.  相似文献   

9.
State-of-the-art lithium (Li)-ion batteries employ silicon anode active material at a limited fraction while strongly relying on fluoroethylene carbonate (FEC) electrolyte additive exceeding 10 wt.% to enable stable cycling. The swelling issue of silicon in the aspect of solid electrolyte interphase (SEI) instability and a risk of safety hazards and high manufacturing cost due to FEC has motivated the authors to design a well-working fluorinated additive substitute. High-capacity cells employing nickel-rich oxide cathode are pursued by operating at > 4.2 V versus Li/Li+, for which anodic stability of electrolyte is required. Herein, a highly effective new ambifunctional additive of icosafluoro-15-crown 5-ether is proposed at a little fraction of 0.4 wt.% for the stabilized interfaces and reduced swelling of high capacity (3.5 mAh cm−2) 5 wt.% SiO-graphite anode and LiNi0.88Co0.08Mn0.04O2 cathode. Utilizing together with a lowered fraction of FEC, reversible long 300 cycles at 4.35 V and 1 C (225 mA g−1) are achieved. Material characterization results reveal that such stabilization is derived from the surface passivation of both anode and cathode with perfluoro ether, LiF, and LixPFy species. The present study gives insight into electrolyte formulation design with lower cost and both-side stabilization strategies for silicon and nickel-rich active materials and their interfaces.  相似文献   

10.
Li+/Na+ exchange has been extensively explored as an effective method to prepare high-performance Mn-based layered cathodes for Li-ion batteries, since the first report in 1996 by P. G. Bruce (Nature, 1996. 381, 499–500). Understanding the detailed structural changes during the ion-exchange process is crucial to implement the synthetic control of high-performance layered Mn-based cathodes, but less studied. Herein, in situ synchrotron X-ray diffraction, density functional theory calculations, and electrochemical tests are combined to conduct the systemic studies into the structural changes during the ion-exchange process of an Mn-only layered cathode O3-type Li0.67[Li0.22Mn0.78]O2 (LLMO) from the corresponding counterpart P3-type Na0.67[Li0.22Mn0.78]O2 (NLMO). The temperature-resolved observations combined with theoretical calculations reveal that the Li+/Na+ exchange is favorable thermodynamically and composited with two tandem topotactic phase transitions: 1) from NLMO to a layered intermediate through ≈60% of Li+/Na+ exchange. 2) then to the final layered product LLMO through further Li insertion. Moreover, the intermediate-dominate composite is obtained by slowing down the exchange kinetics below room temperature, showing better electrochemical performance than LLMO obtained by the traditional molten-salt method. The findings provide guides for the synthetic control of high-performance Mn-based cathodes under mild conditions.  相似文献   

11.
Considered the promising anode material for next-generation high-energy lithium-ion batteries, SiOx has been slow to commercialize due to its low initial Coulombic efficiency (ICE) and unstable solid electrolyte interface (SEI) layer, which leads to reduced full-cell energy density, short cycling lives, and poor rate performance. Herein, a novel strategy is proposed to in situ construct an artificial hybrid SEI layer consisting of LiF and Li3Sb on a prelithiated SiOx anode via spontaneous chemical reaction with SbF3. In addition to the increasing ICE (94.5%), the preformed artificial SEI layer with long-term cycle stability and enhanced Li+ transport capability enables a remarkable improvement in capacity retention and rate capability for modified SiOx. Furthermore, the full cell using Li(Ni0.8Co0.1Mn0.1)O2 and a pre-treated anode exhibits high ICE (86.0%) and capacity retention (86.6%) after 100 cycles at 0.5 C. This study provides a fresh insight into how to obtain stable interface on a prelithiated SiOx anode for high energy and long lifespan lithium-ion batteries.  相似文献   

12.
Trimetal Fe0.8CoMnO4 (FCMO) nanocrystals with a diameter of about 50 nm perfectly embedded in N doped‐carbon composite nanofibers (denoted as FCMO@C) are successfully prepared through integrating double‐nozzle electrospinning with a drying and calcination process. The as‐prepared FCMO@C nanofibers maintain a high reversible capacity of 420 mAh g?1 and about 90% capacity retention after 200 cycles at 0.1 A g?1. For a long‐term cycle, the FCMO@C electrode exhibits excellent cycling stability (87% high capacity retention at 1 A g?1 after 950 cycles). Kinetic analysis demonstrates that the electrochemical characteristics of the FCMO@C corresponds to the pseudocapacitive approach in charge storage as an anode for sodium ion batteries, which dominantly attributes the credit to FCMO nanocrystals to shorten the migration distance of Na+ ions and the nitrogen‐doped carbon skeleton to enhance the electronic transmission and favorably depress the volume expansion during the repeated insertion/extraction of Na+ ions. More significantly, a self‐supported mechanism via continuous electrochemical redox reaction of Fe, Co, and Mn can effectively relieve the volume change during charge and discharge. Therefore, this work can provide a new avenue to improve the sodium storage performance of the oxide anode materials.  相似文献   

13.
Surface stabilization of cathode materials is urgent for guaranteeing long‐term cyclability, and is important in Na cells where a corrosive Na‐based electrolyte is used. The surface of P2‐type layered Na2/3[Ni1/3Mn2/3]O2 is modified with ionic, conducting sodium phosphate (NaPO3) nanolayers, ≈10 nm in thickness, via melt‐impregnation at 300 °C; the nanolayers are autogenously formed from the reaction of NH4H2PO4 with surface sodium residues. Although the material suffers from a large anisotropic change in the c‐axis due to transformation from the P2 to O2 phase above 4 V versus Na+/Na, the NaPO3‐coated Na2/3[Ni1/3Mn2/3]O2/hard carbon full cell exhibits excellent capacity retention for 300 cycles, with 73% retention. The surface NaPO3 nanolayers positively impact the cell performance by scavenging HF and H2O in the electrolyte, leading to less formation of byproducts on the surface of the cathodes, which lowers the cell resistance, as evidenced by X‐ray photoelectron spectroscopy and time‐of‐flight secondary‐ion mass spectroscopy. Time‐resolved in situ high‐temperature X‐ray diffraction study reveals that the NaPO3 coating layer is delayed for decomposition to Mn3O4, thereby suppressing oxygen release in the highly desodiated state, enabling delay of exothermic decomposition. The findings presented herein are applicable to the development of high‐voltage cathode materials for sodium batteries.  相似文献   

14.
Sodium manganese hexacyanoferrate (NaxMnFe(CN)6) is one of the most promising cathode materials for sodium‐ion batteries (SIBs) due to the high voltage and low cost. However, its cycling performance is limited by the multiple phase transitions during Na+ insertion/extraction. In this work, a facile strategy is developed to synthesize cubic and monoclinic structured NaxMnFe(CN)6, and their structure evolutions are investigated through in situ X‐ray diffraction (XRD), ex situ Raman, and X‐ray photoelectron spectroscopy (XPS) characterizations. It is revealed that the monoclinic phase undergoes undesirable multiple two‐phase reactions (monoclinic ? cubic ? tetragonal) due to the large lattice distortions caused by the Jahn–Teller effects of Mn3+, resulting in poor cycling performances with 38% capacity retention. The cubic NaxMnFe(CN)6 with high structural symmetry maintains the structural stability during the repeated Na+ insertion/extraction process, demonstrating impressive electrochemical performances with specific capacity of ≈120 mAh g?1 at 3.5 V (vs Na/Na+), capacity retention of ≈70% over 500 cycles at 200 mA g?1. In addition, the TiO2//C‐MnHCF full battery is fabricated with an energy density of 111 Wh kg?1, suggesting the great potential of cubic NaxMnFe(CN)6 for practical energy storage applications.  相似文献   

15.
With abundant electroactive sites and rapid ion diffusion paths, ultrathin dichalcogenides such as MoS2 demonstrate enormous potential as anodes for sodium/potassium-ion batteries (SIBs/PIBs). However, ultrahigh-aspect-ratio nanosheets are very easy to aggregate and re-stack, drastically weakening their intrinsic merits. Here a sustainable dichalcogenide anode is designed via crumpling carbon-pillared atomic-thin MoS2 nanosheets with CNTs into an elastic ball structure (C-p-MoS2/CNTs). In this architecture, the glucose-derived carbon pillars atomic-thin MoS2 nanosheets and broadens interlayer spacing, ensuring fast Na+/K+ diffusion; CNTs act as 3D scaffolds to impede re-stacking of MoS2 while providing high-speed pathways for electrons; the integration of flexible atomic-thin sheets and high-toughness CNTs further endows the balls with great elasticity to release the cycling stress. Consequently, the C-p-MoS2/CNTs material delivers high reversible capacities, outstanding cycling stability, and superior rate performance as anodes for both SIBs and PIBs. Pairing with Na3V2(PO4)2F3 cathode, the sodium-ion coin-cell could operate at a rate up to 50 C at high mass loading of 9.4 mg cm−2 and manifest ultrastable cycling stability at 40 C over 600 cycles. Impressively, the assembled pouch cell can be cycled stably with a high energy density of 188 Wh kg−1. This study is anticipated to provide inspiration for designing innovative metal dichalcogenides as battery anodes.  相似文献   

16.
Single atomic metal (SAM) doping is reported as an effective strategy to promote the electrochemical property of carbon-based anode materials for high-power sodium-ion batteries (SIBs). However, the effects of SAM with different configurations on solid electrolyte interphase (SEI) and energy storage mechanism of Na+ are not revealed. Herein, Cr single atoms (CrSAs) are reported with controllable configurations (Cr–N4 or Cr–N2) implanted on the N, P co-doped carbon (NPC) anode materials (denoted as CrN4SAs/NPC or CrN2SAs/NPC). The CrN4SAs/NPC anode displays a high specific capacity (318.2 mAh g−1 at 0.05 A g−1) and outstanding rate performance (145.1 mAh g−1 at 5 A g−1), better than those of CrN2SAs/NPC and NPC. The superiority is originated from the difference of SEI and the energy storage mechanism of sodium ions during electrochemical process, which are unveiled through ex situ characterization and theoretical calculation. The full cell assembled with CrN4SAs/NPC anode and Na3V2(PO4)2F3@C cathode displays a high energy density at a high power density.  相似文献   

17.
The employment of ultra-thin lithium metal anode with high loading cathode is the key to realizing high-energy-density rechargeable lithium batteries. Ultra-thin lithium foils are routinely loaded on a copper substrate in batteries, however, the close contact of these two metals causes galvanic corrosion in the presence of electrolyte, which results in irreversible consumption of lithium and decomposition of electrolyte. Herein, a lightweight and highly conductive flexible graphite paper (GP) is applied to replace Cu foil as the current collector for lithium metal anode. It is demonstrated that the application of GP prevents galvanic corrosion and maintains intimate and steady contact between Li foil and GP current collector during cycling, thereby improving the electrochemical performance of the battery. A 1.08 Ah pouch cell assembled with Li@GP anode and LiNi0.8Co0.1Mn0.1O2 cathode exhibits a long lifetime of 240 cycles with a capacity retention of 91.6% under limited Li, high cathode loading and lean electrolyte conditions.  相似文献   

18.
Metal–organic framework-derived metal phosphides with high capacity, facile synthesis, and morphology-controlled are considered as potential anodes for lithium/sodium-ion batteries. However, the severe volume expansion during cycling can cause the electrode material to collapse and reduce the cycle life. Here, novel CoP-C@MoS2/C nanocube composites are synthesized by vapor-phase phosphating and hydrothermal process. As the anode of LIBs, CoP-C@MoS2/C exhibits outstanding long-cycle performance of 369 mAh g−1 at 10 A g−1 after 2000 cycles. In SIBs, the composite also displays excellent rate capability of 234 mAh g−1 at 5 A g−1 and an ultra-high the capacity retention rate of 90.16% at 1 A g−1 after 1000 cycles. Through density functional theory, it is found that the S ions and P ions at the interface formed by CoP and MoS2 can serve as Na+/Li+ diffusion channels with an action of van der Waals force, have attractive characteristics such as high ion adsorption energy, low expansion rate and fast diffusion kinetics compared with MoS2. This study provides enlightenment for the reasonable design and development of lithium/sodium storage anode materials composited with MOF-derived metal phosphides and metal sulfides.  相似文献   

19.
The formation of a solid electrolyte interface (SEI) on the surface of a carbon anode consumes the active sodium ions from the cathode and reduces the energy density of sodium‐ion batteries (SIBs). Herein, a simple electrode‐level presodiation strategy by spraying a sodium naphthaline (Naph‐Na) solution onto a carbon electrode is reported, which compensates the initial sodium loss and improves the energy density of SIBs. After presodiation, an SEI layer is preformed on the surface of carbon anode before battery cycling. It is shown that a large irreversible capacity of 60 mAh g?1 is replenished and 20% increase of the first‐cycle Coulombic efficiency is achieved for a hard carbon anode using this presodiation strategy, and the energy density of a Na0.9[Cu0.22Fe0.30Mn0.48]O2||carbon full cell is increased from 141 to 240 Wh kg?1 by using the presodiated carbon anode. This simple and scalable electrode‐level chemical presodiation route also shows generality and value for the presodiation of other anodes in SIBs.  相似文献   

20.
Sodium-based dual-ion batteries (SDIBs) have attracted increasing research interests in energy storage systems because of their advantages of high operating voltage and low cost. However, exploring desirable anode materials with high capacity and stable structures remains a great challenge. Here, an elaborate design is reported, starting from well-organized MoSe2 nanorods and introducing metal-organic frameworks, which simultaneously forms a bimetallic selenide/carbon composite with coaxial structure via electronegativity induction. By rationally adjusting the vacancy concentration and combining heterostructure engineering, the optimized MoSe2-x/ZnSe@C as anode material for Na-ion batteries achieves rapid electrochemical kinetics and satisfactory reversible capacities. The systematic electrochemical kinetic analyses combined with theoretical calculations further unveil the synergistic effect of Se-vacancies and heterostructure for the enhanced sodium storage, which not only induces more reversible Na+ storage sites but also improves the pseudocapacitance and reduce charge transfer resistance, thereby providing a great contribution to accelerating reaction kinetics. Furthermore, the as-constructed SDIB full cell based on the MoSe2-x/ZnSe@C anode and the expanded graphite cathode demonstrates impressively excellent rate performance (131 mAh g−1 at 4.0 A g−1) and ultralong cycling life over 1000 cycles (100 mAh g−1 at 1.0 A g−1), demonstrating its practical applicability in a wide range of sodium-based energy storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号