首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing single-atom electrocatalysts with high activity and superior selectivity at a wide potential window for CO2 reduction reaction (CO2RR) still remains a great challenge. Herein, a porous Ni N C catalyst containing atomically dispersed Ni N4 sites and nanostructured zirconium oxide (ZrO2@Ni-NC) synthesized via a post-synthetic coordination coupling carbonization strategy is reported. The as-prepared ZrO2@Ni-NC exhibits an initial potential of −0.3 V, maximum CO Faradaic efficiency (F.E.) of 98.6% ± 1.3, and a low Tafel slope of 71.7 mV dec−1 in electrochemical CO2RR. In particular, a wide potential window from −0.7 to −1.4 V with CO F.E. of above 90% on ZrO2@Ni-NC far exceeds those of recently developed state-of-the-art CO2RR electrocatalysts based on Ni N moieties anchored carbon. In a flow cell, ZrO2@Ni-NC delivers a current density of 200 mA cm−2 with a superior CO selectivity of 96.8% at −1.58 V in a practical scale. A series of designed experiments and structural analyses identify that the isolated Ni N4 species act as real active sites to drive the CO2RR reaction and that the nanostructured ZrO2 largely accelerates the protonation process of *CO2 to *COOH intermediate, thus significantly reducing the energy barrier of this rate-determining step and boosting whole catalytic performance.  相似文献   

2.
Effectively improving the selectivity while reducing the overpotential over the electroreduction of CO2 (CO2ER) has been challenging. Herein, electronegative N atoms and coordinatively unsaturated Ni N3 moieties co-anchored carbon nanofiber (Ni N3 NCNFs) catalyst via an integrated electrospinning and carbonization strategy are reported. The catalyst exhibits a maximum CO Faradaic efficiency (F.E.) of 96.6%, an onset potential of −0.3 V, and a low Tafel slope of 71 mV dec−1 along with high stability over 100 h. Aberration corrected scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy identify the atomically dispersed Ni N3 sites with Ni atom bonded by three pyridinic N atoms. The existence of abundant electronegative N dopants adjoin the Ni N3 centers in Ni N3 NCNFs. Theoretical calculations reveal that both, the undercoordinated Ni N3 centers and their first neighboring C atoms modified by extra N dopants, display the positive effect on boosting CO2 adsorption and water dissociation processes, thus accelerating the CO2ER kinetics process. Furthermore, a designed Zn CO2 battery with the cathode of Ni N3 NCNFs delivers a maximum power density of 1.05 mW cm−2 and CO F.E. of 96% during the discharge process, thus providing a promising approach to electric energy output and chemical conversion.  相似文献   

3.
Oxygen-regulated Ni-based single-atom catalysts (SACs) show great potential in accelerating the kinetics of electrocatalytic CO2 reduction reaction (CO2RR). However, it remains a challenge to precisely control the coordination environment of Ni O moieties and achieve high activity at high overpotentials. Herein, a facile carbonization coupled oxidation strategy is developed to mass produce NiO clusters-decorated Ni N C SACs that exhibit a high Faradaic efficiency of CO (maximum of 96.5%) over a wide potential range (−0.9 to −1.3 V versus reversible hydrogen electrode) and a high turnover frequency for CO production of 10 120 h−1 even at the high overpotential of 1.19 V. Density functional theory calculations reveal that the highly dispersed NiO clusters induce electron delocalization of active sites and reduce the energy barriers for *COOH intermediates formation from CO2, leading to an enhanced reaction kinetics for CO production. This study opens a new universal pathway for the construction of oxygen-regulated metal-based SACs for various catalytic applications.  相似文献   

4.
The reduction of carbon dioxide (CO2) into chemical feedstock is drawing increasing attention as a prominent method of recycling atmospheric CO2. Although many studies have been devoted in designing an efficient catalyst for CO2 conversion with noble metals, low selectivity and high energy input still remain major hurdles. One possible solution is to use the combination of an earth‐abundant electrocatalyst with a photoelectrode powered by solar energy. Herein, for the first time, a p‐type silicon nanowire with nitrogen‐doped graphene quantum sheets (N‐GQSs) as heterogeneous electrocatalyst for selective CO production is demonstrated. The photoreduction of CO2 into CO is achieved at a potential of ?1.53 V versus Ag/Ag+, providing 0.15 mA cm?2 of current density, which is 130 mV higher than that of a p‐type Si nanowire decorated with well‐known Cu catalyst. The faradaic efficiency for CO is 95%, demonstrating significantly improved selectivity compared with that of bare planar Si. The density functional theory (DFT) calculations are performed, which suggest that pyridinic N acts as the active site and band alignment can be achieved for N‐GQSs larger than 3 nm. The demonstrated high efficiency of the catalytic system provides new insights for the development of nonprecious, environmentally benign CO2 utilization.  相似文献   

5.
Reverse water-gas shift (RWGS) reaction is the initial and necessary step of CO2 hydrogenation to high value-added products, and regulating the selectivity of CO is still a fundamental challenge. In the present study, an efficient catalyst (CuZnNx@C-N) composed by Zn single atoms and Cu clusters stabilized by nitrogen sites is reported. It contains saturated four-coordinate Zn-N4 sites and low valence CuNx clusters. Monodisperse Zn induces the aggregation of pyridinic N to form Zn-N4 and N4 structures, which show strong Lewis basicity and has strong adsorption for *CO2 and *COOH intermediates, but weak adsorption for *CO, thus greatly improves the CO2 conversion and CO selectivity. The catalyst calcined at 700 °C exhibits the highest CO2 conversion of 43.6% under atmospheric pressure, which is 18.33 times of Cu-ZnO and close to the thermodynamic equilibrium conversion rate (49.9%) of CO2. In the catalytic process, CuNx not only adsorbs and activates H2, but also cooperates with the adjacent Zn-N4 and N4 structures to jointly activate CO2 molecules and further promotes the hydrogenation of CO2. This synergistic mechanism will provide new insights for developing efficient hydrogenation catalysts.  相似文献   

6.
The practical applications of CO2 electroreduction to CO driven by renewable electricity should simultaneously meet the requests of industrial-level CO partial current density (JCO) at least 100 mA cm−2, wide potential window of high CO faradic efficiency (FECO), and low cost. Herein, a new strategy is reported to construct porous hierarchical Ni/N/C single-site catalyst with excellent catalytic activity via coating Ni-containing ZIF-8 on mesostructured basic magnesium carbonate template followed by pyrolysis. The abundant micropores facilitate the formation of numerous edge-hosted Ni-N4 sites with high intrinsic activity, and the interconnected macro/mesopores much promote CO2 delivery and CO release for the full expression of intrinsic activity. Consequently, the catalyst exhibits the industrial-level JCO of 105–462 mA cm−2 at the potential range of −0.6∼−1.3 V with ultra-wide high FECO plateau (>90%@−0.4∼−1.3 V), showing great promise for practical application. This study provides a general synthetic strategy to explore high-performance hierarchical M/N/C electrocatalysts.  相似文献   

7.
CO is usually the dominant product on silver-based catalysts in electrochemical CO2 reduction reaction (CO2RR) possibly due to weak *CO adsorption. In this report, a hydroxypillar[5]arene-extended porous polymer-confined silver catalyst (PAF-PA5-Ag-0.8) for electrochemical CO2RR which can selectively produce ethanol with a maximum Faradaic efficiency of 55% at 11 mA cm−1 is described. The study reveals that the hydroxypillar[5]arene-confined Ag clusters are the active sites for ethanol formation. Moreover, temperature-programmed desorption measurements demonstrate an enhanced adsorption strength of CO* on PAF-PA5-Ag-0.8 compared with that on commercial Ag nanoparticles, which is favored by the C-C coupling to form ethanol. The density functional theory study indicates that the confined Ag clusters in PAF-PA5-Ag-0.8 contribute to high C2 selectivity in CO2RR through facilitating *COOH formation, stabilizing *CO intermediates, and inhibiting hydrogen evolution. This work provides a new design strategy by modulating *CO adsorption strength on non-copper electrocatalysts in converting CO2 into “green” C2 products.  相似文献   

8.
Electrocatalytic reduction of carbon dioxide (CO2ER) in rechargeable Zn–CO2 battery still remains a great challenge. Herein, a highly efficient CO2ER electrocatalyst composed of coordinatively unsaturated single‐atom copper coordinated with nitrogen sites anchored into graphene matrix (Cu–N2/GN) is reported. Benefitting from the unsaturated coordination environment and atomic dispersion, the ultrathin Cu–N2/GN nanosheets exhibit a high CO2ER activity and selectivity for CO production with an onset potential of ?0.33 V and the maximum Faradaic efficiency of 81% at a low potential of ?0.50 V, superior to the previously reported atomically dispersed Cu–N anchored on carbon materials. Experimental results manifest the highly exposed and atomically dispersed Cu–N2 active sites in graphene framework where the Cu species are coordinated by two N atoms. Theoretical calculations demonstrate that the optimized reaction free energy for Cu–N2 sites to capture CO2 promote the adsorption of CO2 molecules on Cu–N2 sites; meanwhile, the short bond lengths of Cu–N2 sites accelerate the electron transfer from Cu–N2 sites to *CO2, thus efficiently boosting the *COOH generation and CO2ER performance. A designed rechargeable Zn–CO2 battery with Cu–N2/GN nanosheets deliver a peak power density of 0.6 mW cm?2, and the charge process of battery can be driven by natural solar energy.  相似文献   

9.
Tandem catalysis presents a promising strategy to improve the selectivity toward multicarbon products in the electrocatalytic carbon dioxide reduction reaction (CO2RR). For CO2RR, CO is a critical intermediate for producing multicarbon products. However, the management of CO localization and CO diffusion remains underexplored despite its critical role. Herein, a 3D tandem catalyst electrode with silver nanoparticles (Ag NPs) is designed to generate CO as an intermediate product within a copper (Cu) nanoneedle array. Via this nanostructured design, CO2 forms C2+ products with a high Faradaic efficiency (FEC2+) of 64% in an H-cell and 70% in a flow cell with a current density of 350 mA cm−2. These figures-of-merit are currently among the top literature reports. More importantly, in situ Raman spectroscopy and finite-element method calculations are employed to elucidate the origins of enhanced selectivity. These approaches reveal the crucial role of prolonging the CO diffusion path length for improving CO utilization during CO2 conversion with tandem catalyst systems. The favorable CO2RR FEC2+ in two distinct environments (H-cell and flow cell) further corroborates that this effect is not limited to a particular reactor environment. Overall, this study provides new insights for designing tandem catalysts for improved CO2RR selectivity to C2+ products.  相似文献   

10.
Solar-driven CO2 reduction reaction (CO2RR) with water into carbon-neutral fuels is of great significance but remains challenging due to thermodynamic stability and kinetic inertness of CO2. Biomass-derived nitrogen-doped carbon (N-Cb) have been considered as promising earth-abundant photocatalysts for CO2RR, although their activities are not ideal and the reaction mechanism is still unclear. Herein, an efficient catalyst is developed for CO2-to-CO conversion realized on diverse N-Cb materials with hierarchical pore structures. It is demonstrated that the CO2-to-CO conversion preferentially takes place on positively charged carbon atoms next to pyridinic-N using two representatives treated pollens with the largest difference in pyridinic-N density and N content as model photocatalysts. Systematic experimental results indicate that surface local electric field originating from charge separation can be boosted by hierarchical pore structures, doped N, as well as pyridinic-N. Mechanistic studies reveal that positively charged carbon atoms next to pyridinic-N serve as active sites for CO2RR, reduce the energy barrier on the formation of CO*, and facilitate the CO2RR performance. All these benefits cooperatively contribute to treated chrysanthemum pollen catalyst exhibiting excellent CO formation rate of 203.2 µmol h−1 g−1 with 97.2% selectivity in pure water vapor. These results provide a new perspective into CO2RR on N-Cb, which shall guide the design of nature-based photocatalysts for high-performance solar-fuel generation.  相似文献   

11.
Developing highly efficient carbon aerogels (CA) electrocatalysts based on transition metal-nitrogen sites is critical for the CO2 electroreduction reaction (CO2RR). However, simultaneously achieving a high current density and high Faradaic efficiency (FE) still remains a big challenge. Herein, a series of unique 3D hierarchical cross-linked nanostructured CA with metal-nitrogen sites (M N, M = Ni, Fe, Co, Mn, Cu) is developed for efficient CO2RR. An optimal CA/N-Ni aerogel, featured with unique hierarchical porous structure and highly exposed M-N sites, exhibits an unusual CO2RR activity with a CO FE of 98% at −0.8 V. Notably, an industrial current density of 300 mA cm−2 with a high FE of 91% is achieved on CA/N-Ni aerogel in a flow-cell reactor, which outperforms almost all previously reported M-N/carbon based catalysts. The CO2RR activity of different CA/N-M aerogels can be arranged as Ni, Fe, Co, Mn, and Cu from high to low. In situ spectroelectrochemistry analyses validate that the rate-determining step in the CO2RR is the formation of *COOH intermediate. A Zn CO2 battery is further assembled with CA/N-Ni as the cathode, which shows a maximum power density of 0.5 mW cm−2 and a superior rechargeable stability.  相似文献   

12.
Herein, novel carbons that, owing to a high density of micropores (up to 79%) and N-content (up to 14.9%), offering exciting potential for post-combustion CO2 capture are reported. Given that little is known about how starting materials impact the structure and performance of carbons, three different microporous materials are pyrolyzed. These include a Co-(metal-organic framework) (MOF), a Co-MOF-polymer composite, and a coordination polymer derived from the same monomer and cobalt ions. Notably, the cobalt, which is required to drive the polymerization, is subsequently leached from the carbons via acid for its reuse in MOF synthesis. Next, various metrics including CO2 capacity, selectivity, isosteric heat of adsorption, breakthrough time and cyclability are assessed. The acid treated carbons adsorb 0.21, 0.99, and 1.11 mmol CO2 g−1, respectively, (313 K, 0.15 bar) with CO2/N2 selectivity ranging from 37 to 52. Due to superior capacity, the polymer-derived carbons also reveal impressive breakthrough times in simulated flue gas mixtures (15% CO2/85% N2, 80% RH, 313 K) ranging from 33 to 40 min g−1. Similar performance is also observed under dry conditions and after pre-saturation with water for 1.5 h. Remarkably, no loss in working capacity is observed after 100 CO2 TSA cycles (313 K/393 K).  相似文献   

13.
Atomically dispersed Fe─N─C catalysts display great potential for efficient CO production in the field of electrochemical CO2 reduction (ECR), but still suffer from unsatisfactory activity limited by the slow proton and electron transfer during the ECR process. Here, a superior Fe─N─C electrocatalyst is designed by anchoring the individual FeN4 sites and Fe nanoparticles onto highly conductive carbon nanotubes. The resultant catalyst displays a commendable CO partial current density of 16.01 mA cm−2 with a turnover frequency of 3519.6 h−1 at −0.65 V in an H-type cell, and also exhibits CO selectivity > 90% under high current density over 120 mA cm−2 in a flow cell. This remarkable activity exceeds a host of previously reported Fe─N─C catalysts. The findings indicate that the carbon nanotube facilitates CO production due to its strong capability of electron transport and charge transfer. In situ spectroscopic analysis, controlled experiments, and theoretical calculations reveal that Fe nanoparticles effectively promote water dissociation and the subsequent protonation step, accelerate the formation of *COOH intermediate, and thus greatly enhance the ECR activity.  相似文献   

14.
Electrochemically driven carbon dioxide (CO2) conversion is an emerging research field due to the global warming and energy crisis. Carbon monoxide (CO) is one key product during electroreduction of CO2; however, this reduction process suffers from tardy kinetics due to low local concentration of CO2 on a catalyst's surface and low density of active sites. Herein, presented is a combination of experimental and theoretical validation of a Ni porphyrin‐based covalent triazine framework (NiPor‐CTF) with atomically dispersed NiN4 centers as an efficient electrocatalyst for CO2 reduction reaction (CO2RR). The high density and atomically distributed NiN4 centers are confirmed by aberration‐corrected high‐angle annular dark field scanning transmission electron microscopy and extended X‐ray absorption fine structure. As a result, NiPor‐CTF exhibits high selectivity toward CO2RR with a Faradaic efficiency of >90% over the range from ?0.6 to ?0.9 V for CO conversion and achieves a maximum Faradaic efficiency of 97% at ?0.9 V with a high current density of 52.9 mA cm?2, as well as good long‐term stability. Further calculation by the density functional theory method reveals that the kinetic energy barriers decreasing for *CO2 transition to *COOH on NiN4 active sites boosts the performance.  相似文献   

15.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   

16.
The development of highly efficient robust electrocatalysts with low overpotential and industrial-level current density is of great significance for CO2 electroreduction (CO2ER), however the low proton transport rate during the CO2ER remains a challenge. Herein, a porous N-doped carbon nanofiber confined with tin-nitrogen sites (Sn/NCNFs) catalyst is developed, which is prepared through an integrated electrospinning and pyrolysis strategy. The optimized Sn/NCNFs catalyst exhibits an outstanding CO2ER activity with the maximum CO FE of 96.5%, low onset potential of −0.3 V, and small Tafel slope of 68.8 mV dec−1. In a flow cell, an industrial-level CO partial current density of 100.6 mA cm−2 is achieved. In situ spectroscopic analysis unveil the isolated Sn N site acted as active center for accelerating water dissociation and subsequent proton transport process, thus promoting the formation of intermediate *COOH in the rate-determining step for CO2ER. Theoretical calculations validate pyrrolic N atom adjacent to the Sn N active species assisted reducing the energy barrier for *COOH formation, thus boosting the CO2ER kinetics. A Zn-CO2 battery is designed with the cathode of Sn/NCNFs, which delivers a maximum power density of 1.38 mW cm−2 and long-term stability.  相似文献   

17.
Modulating the coordination environment of single-atom catalysts (SACs) is an attractive approach for maximizing the catalytic activity of single-atom centers. Currently, the synthesis of low-coordinated SACs is mainly confined to increasing the pyrolysis temperature (≥900 °C) to control C─N volatile fragments. Herein, a novel and universal strategy for the low-coordinated SACs modulation is presented using transition metal (e.g., Ni, Co, Zn) ionic liquid precursors under relatively mild temperature of 600 °C, which regulates the L-shell electronic structure and decreases nearly 50% electrophilic reactivity by ionization of 4-position N atom, thereby orienting synthesis of the SACs with metal-N3 centers. The Ni-N3 SACs exhibit exceptional CO2 electroreduction performance of 99.7% CO Faraday efficiency with an ultra-high CO partial current density of 467.55 mA·cm−2 as well as a CO production rate up to 10417.51 µmol·h−1·cm−2 in flow cell. The superior catalytic activity achieves over twofold increase compared with the Ni-N4 SACs prepared by non-metal ionic liquid precursors due to the lower free energy of the key intermediate *COOH and the stronger adsorption energy.  相似文献   

18.
Molecular catalysts are promising catalysts to electrochemically convert CO2 into CO with high selectivity. However, achieving industrial-level current density remains challenging due to the limitation of charge- and mass-transport in gas diffusion electrode. Herein, a novel gas diffusion electrode architecture by confining highly dispersed cobalt(II) phthalocyanine (CoPc) molecules into -graphene oxide (GO) nanosheets (denoted as CoPc@GO) is designed. Benefiting from the accelerated CO2 diffusion and charge transport in the nanoconfined structure, the designed electrode achieves a high CO partial current density of 481.65 ± 12.50 mA cm−2 and a cathode energy efficiency over 64% for CO. The experimentally measured CO2 transport dynamics and molecular dynamics simulation confirm the accelerated CO2 diffusion, while theoretical calculations reveal the decreased energy barrier of the CO2 activation in the confined space. This study paves a new way for electrode architecture design that would accelerate the implementation of CO2 electrolysis technology.  相似文献   

19.
Hydrazine oxidation assisted water electrolysis offers a unique rationale for energy-saving hydrogen production, yet the lack of effective non-noble-metal bifunctional catalysts is still a grand challenge at the current stage. Here, the Mo doped Ni3N and Ni heterostructure porous nanosheets grow on Ni foam (denoted as Mo Ni3N/Ni/NF) are successfully constructed, featuring simultaneous interface engineering and chemical substitution, which endow the outstanding bifunctional electrocatalytic performances toward both hydrazine oxidation reaction (HzOR) and hydrogen evolution reaction (HER), demanding a working potential of −0.3 mV to reach 10 mA cm−2 for HzOR and −45 mV for that of HER. Impressively, the overall hydrazine splitting (OHzS) system requires an ultralow cell voltage of 55 mV to deliver 10 mA cm−2 with remarkable long-term durability. Moreover, as a proof-of-concept, economical H2 production systems utilizing OHzS unit powered by a waste AAA battery, a commercial solar cell, and a homemade direct hydrazine fuel cell (DHzFC) are investigated to inspire future practical applications. The density functional theory calculations demonstrate that the synergy of Mo substitution and abundant Ni3N/Ni interface owns a more thermoneutral value for H* absorption ability toward HER and optimized dehydrogenation process for HzOR.  相似文献   

20.
The visible‐light‐driven photocatalytic CO2 reduction is one appealing approach to simultaneously mitigate the energy crisis and environmental issues. It is highly desirable but challenging to selectively and efficiently convert CO2 into desirable products. Herein, a covalent organic framework hosting metalloporphyrin‐based carbon dots (M‐PCD@TD‐COF, M = Ni, Co, and Fe) is first presented, which serves as heterogeneous catalysts for CO2 photoreduction. M‐PCD@TD‐COF not only enriches available COF‐based catalytic materials, but also provides suitable environment for CO2 adsorption and activation on metalloporphyrin‐based carbon dots. The advantages of the host environment in COFs are highlighted by the satisfactory catalytic activity and remarkable selectivity of CO2‐to‐CO conversion over H2 generation up to 98%. The photocatalytic system is effective for both pure CO2 and the simulated flue gas. This work provides new protocols for the rational design of COF‐based heterogeneous catalysts for selective CO2 photoreduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号