首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-step sequentially deposition strategy has been widely used to produce high-performance FAPbI3-based solar cells. However, due to the rapid reaction between PbI2 and FAI, a dense perovskite film forms on top of the PbI2 layer immediately and blocks the FAI diffusion into the bottom of the PbI2 film for a complete reaction, which results in a low-efficiency and limited reproducibility of perovskite solar cells (PSCs). Here, high-quality α-FAPbI3 perovskite films by crystal growth regulation with 4-fluorobenzamide additives is fabricated. The additives can interact with FAI to suppress the fast reaction between the FAI and PbI2 and effectively passivate the under-coordinated Pb2+ or I- defects. As a result, α-FAPbI3 perovskite films with low trap density and large grain size are prepared. The modified PSCs present a high-power conversion efficiency of 24.08%, maintaining 90% of their initial efficiency after 1400 h in high humidity. This study provides an efficient strategy of synergistic crystallization and passivation to form high-quality α-FAPbI3 films for high-performance PSCs.  相似文献   

2.
Hybrid perovskites have great potential as light-absorbing materials, while its degradation of poor crystallization and ion migration have been the major obstacle in perovskite solar cells (PSCs). Herein, the bifunctional-based small molecule dicyandiamide (DCD) was applied as additive in the PSCs. The amino and cyano group of DCD could effectively control crystallization and passivating grain defects, resulting in the high-quality perovskite films with large grain size. In addition, the adding of DCD increases the film conductivity of perovskite active layer, which is beneficial for charge transport in perovskite film. The DCD added PSCs shows an optimal power conversion efficiency (PCE) of 19.08% with negligible hysteresis. Furthermore, the long-term stability of PSCs is significantly enhanced. The results indicate that the device's integrative performance could be efficiently improved by the synergistic effect of amino and cyano functional groups, meaning that the addition of DCD into perovskite precursor could enable this optimization.  相似文献   

3.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

4.
The vast majority of high-performance perovskite solar cells (PSCs) are based on multi-cation mixed-anion compositions incorporating methylammonium (MA) and bromide (Br). Nevertheless, the thermal instability of MA and the tendency of mixed halide compositions to phase segregate limit the long-term stability of PSCs. However, reports of MA-free and/or Br-free compositions are rare in the community since their performance is generally inferior. Here, a strategy is presented to achieve highly efficient and stable PSCs that are altogether cesium (Cs)-free, MA-free and Br-free. An antisolvent quenching process is used to in-situ deposit a polymeric interlayer to promote the growth of phase-pure formamidinium lead tri-iodide perovskite crystals with reduced defect density and to assist in photo-excited charge extraction. The PSCs developed are among the best-performing reported for such compositions. Moreover, the PSCs show superior stability under continuous exposure to both illumination and 85 °C heat.  相似文献   

5.
Organolead trihalide perovskite films with a large grain size and excellent surface morphology are favored to good‐performance solar cells. However, interstitial and antisite defects related trap‐states are originated unavoidably on the surfaces of the perovskite films prepared by the solution deposition procedures. The development of post‐growth treatment of defective films is an attractive method to reduce the defects to form good‐quality perovskite layers. Herein, a post‐treatment tactic is developed to optimize the perovskite crystallization by treating the surface of the one‐step deposited CH3NH3PbI3 (MAPbI3) using formamidinium iodide (FAI). Charge carrier kinetics investigated via time‐resolved photoluminescent, open‐circuit photovoltage decay, and time‐resolved charge extraction indicate that FAI post‐treatment will boost the perovskite crystalline quality, and further result in the reduction of the defects or trap‐states in the perovskite films. The photovoltaic devices by FAI treatment show much improved performance in comparison to the controlled solar cell. As a result, a champion solar cell with the best power conversion efficiency of 20.25% is obtained due to a noticeable improvement in fill factor. This finding exhibits a simple procedure to passivate the perovskite layer via regulating the crystallization and decreasing defect density.  相似文献   

6.
Perovskite solar cell (PSC) has attracted great attention due to its high power conversion efficiency (PCE), low cost and solution processability. The well-designed interface and the modification of electron transport layer (ETL) are critical to the PCE and long-term stability of PSCs. In this article, a fused-ring electron acceptor is employed as the interfacial material between TiO2 and the perovskite in rigid and flexible PSCs. The modification improves the surface of TiO2, which decreases the defects of ETL surface. Moreover, the modified surface has lower hydrophilicity, and thus is beneficial to the growth of perovskite with large grain size and high quality. As a result, the interfacial charge transfer is promoted and the interfacial charge recombination can be suppressed. The highest PCE of 19.61% is achieved for the rigid PSCs after the introduction of ITIC, and the hysteresis effect is significantly reduced. Flexible PSC with ITIC obtains a PCE of 14.87%, and the device stability is greatly improved. This study provides an efficient candidate as the interfacial modifier for PSCs, which is compatible with low-temperature solution process and has a great practical potential for the commercialization of PSCs.  相似文献   

7.
As the power-conversion efficiency (PCE) of organic–inorganic lead halide perovskite solar cells (PSCs) is approaching the theoretical maximum, the most crucial issue concerns long-term ambient stability. Here, the application of PCN-224 quantum dots (QDs) is reported, a typical Zr-based porphyrinic metal–organic framework (MOF), to enhance the ambient stability of PSCs. PCN-224 QDs with abundant Lewis-base groups (e.g., CO, C−N, CN) contribute to high-quality perovskite films with enlarged grain size and reduced defect density by interaction with under-coordinated Pb2+. Meanwhile, PCN-224 QDs enable the well-matched energy level at the perovskite/hole transport layer (HTL) interface, thereby facilitating hole extraction and transport. More importantly, PCN-224 QDs-treated HTL can capture Li+ from bis(trifluoromethanesulfonyl)imide additive, leading to the reduced aggregation and less direct contact with moisture for hygroscopic Li-TFSI. Moreover, PCN-224 QDs mitigated Li+ ion migration into the perovskite layer, thus avoiding the formation of deleterious defects. The resultant devices yield a champion PCE of 22.51%, along with substantially improved durability, including humidity, thermal and light soaking stabilities. The findings provide a new approach toward efficient and stable PSCs by applying MOF QDs.  相似文献   

8.
High-performance perovskite film with superior internal and surface qualities is critical for perovskite solar cells (PSCs) but hardly achievable due to the rapid crystallization rate of perovskite itself. Herein, a novel technique by in situ manipulating perovskite crystal growth and modifying the surface properties is developed using organic passivating agent-assisted polydimethylsiloxane membrane as a facial mask (FM) of perovskites. By placing the perovskite-precursor films with their faces toward the designed FM during thermal annealing, a favorable microenvironment is constructed for incubating high-quality perovskite films with smooth surface, enhanced vertical orientation of (100) plane, and well-adjusted interfacial energy levels. With this versatile FM incubation technique, efficient PSCs for both methylammonium (MA)-based and formamidinium (FA)-MA-Cs mixed perovskite systems are facilely fabricated, delivering excellent humidity/thermal stabilities and promising efficiencies up to 21.4% with an improved open-circuit voltage of 1.15 V in MA-based devices. This study not only provides a facile and efficient approach to rationally manage the perovskite growth process, but also reveals the fundamental characteristics of high-quality perovskite films comprehensively for the construction of efficient and stable PSCs.  相似文献   

9.
Defects at the surface and grain boundaries of metal–halide perovskite films lead to performance losses of perovskite solar cells (PSCs). Here, organic cyano‐based π‐conjugated molecules composed of indacenodithieno[3,2‐b]thiophene (IDTT) are reported and it is found that their cyano group can effectively passivate such defects. To achieve a homogeneous distribution, these molecules are dissolved in the antisolvent, used to initiate the perovskite crystallization. It is found that these molecules are self‐anchored at the grain boundaries due to their strong binding to undercoordinated Pb2+. On a device level, this passivation scheme enhances the charge separation and transport at the grain boundaries due to the well‐matched energetic levels between the passivant and the perovskite. Consequently, these benefits contribute directly to the achievement of power conversion efficiencies as high as 21.2%, as well as the improved environmental and thermal stability of the PSCs. The surface treatment provides a new strategy to simultaneously passivate defects and enhance charge extraction/transport at the device interface by manipulating the anchoring groups of the molecules.  相似文献   

10.
All-inorganic perovskite solar cells (PSCs) have been the research focus due to their high thermal stability and proper band gap for tandem solar cells. However, their power conversion efficiency (PCE) is still lower than that of organic-inorganic hybrid PSCs. Herein, a sacrificing dye (Rhodamine B isothiocyanate, RBITC) is developed to regulate the growth of perovskite film by in situ release of ethylammonium cations, isothiocyanate anions and benzoic acid molecules upon annealing and illumination. The ethylammonium cations can efficiently passivate surface defects. The isothiocyanate anions incorporate with uncoordinated Pb to regulate the crystallization process. The benzoic acid molecules facilitate the nucleation of the perovskite crystals. Especially, the illumination can accelerate the release of these beneficial ions/molecules to improve the quality of perovskite films further. After optimization with RBITC, a high open circuit voltage (VOC) of 1.24 V and a champion PCE of 20.95% are obtained, which are among the highest Voc and PCE values of CsPbI3 PSCs. Accordingly, the operational stability of the PSC devices is significantly improved. The results provide an efficient chemical strategy to regulate the formation of perovskite films in whole crystallization process for high performance all-inorganic PSCs.  相似文献   

11.
Solution‐processed triple‐cation perovskite solar cells (PSCs) rely on complex compositional engineering or delicate interfacial passivation to balance the trade‐off between cell efficiency and long‐term stability. Herein, the facile fabrication of highly efficient, stable, and hysteresis‐free tin oxide (SnO2)‐based PSCs is demonstrated with a champion cell efficiency of 20.06% using a green, halogen‐free antisolvent. The antisolvent, composed of ethyl acetate (EA) solvent and hexane (Hex) in different proportions, works exquisitely in regulating perovskite crystal growth and passivating grain boundaries, leading to the formation of a crack‐free perovskite film with enlarged grain size. The high quality perovskite film inhibits carrier recombination and substantially improves the cell efficiency, without requiring an additional enhancer/passivation layer. Furthermore, these PSCs also demonstrate remarkable long‐term stability, whereby unencapsulated cells exhibit a power conversion efficiency (PCE) retention of ≈71% after >1500 hours of storage under ambient condition. For encapsulated cells, an astounding PCE retention of >98% is recorded after >3000 hours of storage in air. Overall, this work realizes the fabrication of SnO2‐based PSCs with a performance greater or comparable to the state‐of‐the‐art PSCs produced with halogenated antisolvents. Evidently, EA–Hex antisolvent can be an extraordinary halogen‐free alternative in maximizing the performance of PSCs.  相似文献   

12.
Compared with silicon‐based solar cells, organic–inorganic hybrid perovskite solar cells (PSCs) possess a distinct advantage, i.e., its application in the flexible field. However, the efficiency of the flexible device is still lower than that of the rigid one. First, it is found that the dense formamidinium (FA)‐based perovskite film can be obtained with the help of N‐methyl‐2‐pyrrolidone (NMP) via low pressure‐assisted method. In addition, CH3NH3Cl (MACl) as the additive can preferentially form MAPbCl3?xIx perovskite seeds to induce perovskite phase transition and crystal growth. Finally, by using FAI·PbI2·NMP+x%MACl as the precursor, i.e., ligand and additive synergetic process, a FA‐based perovskite film with a large grain size, high crystallinity, and low trap density is obtained on a flexible substrate under ambient conditions due to the synergetic effect, e.g., MACl can enhance the crystallization of the intermediate phase of FAI·PbI2·NMP. As a result, a record efficiency of 19.38% in flexible planar PSCs is achieved, and it can retain about 89% of its initial power conversion efficiency (PCE) after 230 days without encapsulation under ambient conditions. The PCE retains 92% of the initial value after 500 bending cycles with a bending radii of 10 mm. The results show a robust way to fabricate highly efficient flexible PSCs.  相似文献   

13.
In recent years, hybrid perovskite solar cells (PSCs) have attracted much attention owing to their low cost, easy fabrication, and high photoelectric conversion efficiency. Nevertheless, solution-processed perovskite films usually show substantial structural disorders, resulting in ion defects on the surface of lattice and grain boundaries. Herein, a series of D–π–A porphyrins coded as CS0 , CS1 , and CS2 that can effectively passivate the perovskite surface, increase VOC and FF, reduce the hysteresis effect, enhance power conversion efficiency to be higher than 22%, and improve the device stability is developed. The results in this study demonstrated that the donor–π–acceptor type porphyrin derivatives are promising passivators that can improve the cell performance of PSCs.  相似文献   

14.
Grain boundaries in lead halide perovskite films lead to increased recombination losses and decreased device stability under illumination due to defect‐mediated ion migration. The effect of a conjugated polymer additive, poly(bithiophene imide) (PBTI), is investigated in the antisolvent treatment step in the perovskite film deposition by comprehensive characterization of perovskite film properties and the performance of inverted planar perovskite solar cells (PSCs). PBTI is found to be incorporated within grain boundaries, which results in an improvement in perovskite film crystallinity and reduced defects. The successful defect passivation by PBTI yields reduces recombination losses and consequently increases power conversion efficiency (PCE). In addition, it gives rise to improved photoluminescence stability and improved PSC stability under illumination which can be attributed to reduced ion migration. The optimal devices exhibit a PCE of 20.67% compared to 18.89% of control devices without PBTI, while they retain over 70% of the initial efficiency after 600 h under 1 sun illumination compared to 56% for the control devices.  相似文献   

15.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

16.
近年来研究表明,通过增大晶粒尺寸和减少晶界数量可以有效减小钙钛矿太阳能电池的漏电流和增大并联电阻,极大地增加其能量转化效率。溶剂热处理工艺是一种利用溶解再结晶的原理增大薄膜晶粒的实用工艺,可用于制备大晶粒高质量的多晶薄膜。本文制备了不同溶剂热处理时长的旋涂制备的钙钛矿CH3NH3PbI3薄膜,利用SEM和XRD分析了其形貌和晶体结构的变化,探索了薄膜晶粒形貌与电池性能的对应关系,应用优化后的溶剂热处理工艺成功制备出大晶粒、高性能的钙钛矿薄膜。实验表明,溶剂热处理法制备的钙钛矿CH3NH3PbI3薄膜平均晶粒尺寸接近3μm,较普通热处理方法制备的薄膜晶粒尺寸(约300 nm)有显著增大。  相似文献   

17.
Witnessed by the rapid increase of power conversion efficiency to 25.5%, organic–inorganic hybrid perovskite solar cells (PSCs) are becoming promising candidates of next-generation photovoltaics. However, PSCs can be unstable under the influence of light and bias. Especially, grain boundaries (GBs) are vulnerable to attack by light and bias in perovskite films, leading to degradation of photovoltaic properties of PSCs. Herein, photocurrent atomic force microscopy and Kelvin probe force microscopy are employed to systematically investigate the bias-dependent charge transport behaviors and stability of (FAPbI3)0.85(MAPbBr3)0.15 perovskite under working condition. Bias-dependent morphology and photocurrent images show irreversible decomposition of the perovskite at a bias of 0.1 V or below, which is accelerated by light illumination, leading to formation of an interfacial layer that restricts carrier transport. Meanwhile, GBs appear to enhance carrier transport at larger bias, but serve as breakthrough sites for perovskite decomposition at smaller bias. Introducing excess methylammonium iodide promotes decomposition, while potassium iodide passivation greatly relieves the decomposition. These results support the ion migration mechanism of decomposition through interfaces and GBs. This work provides a deeper understanding of bias-induced degradation of PSCs as well as bias-dependent double-edged roles of GBs, and forms valuable guidance for appropriate operation of PSCs.  相似文献   

18.
Perovskite degradation induced by surface defects and imperfect grain boundaries of films seriously damages the performance of perovskite solar cells (PSCs). Meanwhile, conventional organic molecules cannot maintain the long-time passivation effects under the stimulation of external environmental factors. Here, efficient and stable grain passivation in perovskite films is realized by preparing formic acid-functionalized 2D metal–organic frameworks (MOFs) as the terminated agent. Through robust interactions between exposed active sites and PbI2, the 2D MOFs tightly caps the surface of PbI2-terminated perovskite grains to stabilize the perovskite phases and aids the adhesion of adjacent grains. The MOFs mainly distributed at the grain boundaries of the perovskite film is directly observed at the microscopic scale. The modified perovskite films have regular morphology, lower defect density, and superior optoelectronic properties. Benefiting from the suppressed charge recombination and faster charge extraction, a power conversion efficiency of 21.28% is achieved for the best-performing PSC device. The unencapsulated PSCs with the MOFs modification maintain 88% and 81% of their initial efficiency after 750 h heating at 85  ° C under N2 atmosphere and more than 1000 h storage in ambient environment (25  ° C, RH  ≈  40%), respectively.  相似文献   

19.
钙钛矿薄膜的晶粒尺寸对器件性能影响很大。采用湿润性不同的空穴传输层以及不同浓度的CH3NH3I(MAI)溶液,使用热退火和溶剂气氛退火的方法制备出CH3NH3PbI3薄膜及相应电池。测量了不同制备条件的钙钛矿薄膜的X射线衍射、扫描电子显微镜、光致发光谱,以及器件的电流密度-电压曲线。结果表明,溶剂气氛退火可以有效地增大薄膜的晶粒尺寸,提高器件的电流密度;较高浓度的MAI能将PbI2完全转化为CH3NH3PbI3,增大晶粒尺寸;不湿润的功函数更高的空穴传输层有利于电池效率的提高。制备了最高效率为13.3%的CH3NH3PbI3钙钛矿电池,为制备更大晶粒的钙钛矿薄膜与更高效率的钙钛矿太阳电池奠定了基础。  相似文献   

20.
In recent years,perovskite solar cells(PSCs)have attrac-ted tremendous attention due to their high power conver-sion efficiencies(PCEs)and tailorable optoelectronic proper-ties.Up to now,the certified PCE of lab-scale PSCs has climbed up to 25.5%(see https://www.nrel.gov/pv/cell-effi-ciency.html).However,there still exists a large efficiency gap between small-area devices and large-area solar modules.The main reason refers to the difference between morpho-logy and crystallinity caused by different perovskite film forma-tion.To address this issue,it is of great necessity to make high-quality perovskite films.Currently,efforts are being de-voted to exquisitely modulating the nucleation and crystal growth of perovskite films[1-3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号