首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Previous work on diffusion in inert-gas bombarded Al2O3 has revealed the presence of four diffusion processes, of which two take place well below the temperatures for self-diffussion, one agrees with self-diffusion, and one occurs at temperatures well above those for self-diffusion. The present work serves to explore in greater detail the two low-temperature processes. It is shown that the first, which is found in -Al2O3, Al(OH)3, and γ-Al2O3beginning at about 100° C, is consistent with a range of ΔH's of 28 to 50 kcal/mole. The mechanism of the process is hinted at by the fact that it overlaps the temperatures both for Al(OH)3decomposition and for point-defect motion in -Al2O3; the correlation with point defects is believed, however, to be the more significant. The second process, which is found only in -Al2O3 beginning at 500–650° C, implies an essentially single ΔH lying between 69 and 79 kcal/mole. It was suggested previously by Matzke and Whitton on the basis of electron diffraction that the process could be attributed to the amorphous-crystalline transition of -Al2O3. Further aspects of low-temperature diffusion in Al2O3 were revealed by comparing autoradiographs of specimens of -A2O3which were bombarded to various doses and then either heated to 850° C or immersed in unheated 12N NaOH. Thus regions exposed to a high dose and which would be expected to be amorphous, had an increased sticking factor, a greater tendency to lose gas during heating, and an enhanced chemical reactivity.  相似文献   

3.
The oxygen potentials over the phase field: Cs4U5O17(s)+Cs2U2O7(s)+Cs2U4O12(s) was determined by measuring the emf values between 1048 and 1206 K using a solid oxide electrolyte galvanic cell. The oxygen potential existing over the phase field for a given temperature can be represented by: Δμ(O2) (kJ/mol) (±0.5)=−272.0+0.207T (K). The differential thermal analysis showed that Cs4U5O17(s) is stable in air up to 1273 K. The molar Gibbs energy formation of Cs4U5O17(s) was calculated from the above oxygen potentials and can be given by, ΔfG0 (kJ/mol)±6=−7729+1.681T (K). The enthalpy measurements on Cs4U5O17(s) and Cs2U2O7(s) were carried out from 368.3 to 905 K and 430 to 852 K respectively, using a high temperature Calvet calorimeter. The enthalpy increments, (H0TH0298), in J/mol for Cs4U5O17(s) and Cs2U2O7(s) can be represented by, H0TH0298.15 (Cs4U5O17) kJ/mol±0.9=−188.221+0.518T (K)+0.433×10−3T2 (K)−2.052×10−5T3 (K) (368 to 905 K) and H0TH0298.15 (Cs2U2O7) kJ/mol±0.5=−164.210+0.390T (K)+0.104×10−4T2 (K)+0.140×105(1/T (K)) (411 to 860 K). The thermal properties of Cs4U5O17(s) and Cs2U2O7(s) were derived from the experimental values. The enthalpy of formation of (Cs4U5O17, s) at 298.15 K was calculated by the second law method and is: ΔfH0298.15=−7645.0±4.2 kJ/mol.  相似文献   

4.
Grazing X-ray diffraction was used to study in details the behaviour of two spinels, ZnAl2O4 and MgAl2O4 irradiated by swift ions. Such an irradiation allows to have an important irradiated depth and then accurate diffraction diagrams. Rietveld refinement done on these diagrams clearly show an order–disorder transition due to a melting of cations under irradiation in these two spinels. More especially, these results clearly exhibit that no new phase is created under irradiation in MgAl2O4. Raman spectroscopy, sensitive to the crystallographic space group, seems to confirm this analysis.  相似文献   

5.
The sodium potential in the test electrode (a) Pt,O2,Na2ZrO3,ZrO2 was measured by using the emf technique employing Na-β-alumina as the solid electrolyte in conjunction with (b) Pt,O2,Al2O3,NaAl11O17, (c) Pt,O2,Na2MoO4,Na2Mo2O7 and (d) Pt,Na2CO3,CO2,O2 as the reference electrodes over the ranges 880–1045, 700–800 and 850–940 K, respectively. The emf results between electrodes (b) and (c) were utilized for internal consistency checks. From the results on cells formed between (a) and (b) and those on (a) and (c), the standard Gibbs energy of formation, ΔfGo (kJ/mol) of Na2ZrO3 was determined to be −1699.4+0.3652T (K) valid over the temperature range 700–1045 K. The break in the emf data at 1045 K was corroborated by independent TG/DTA measurements carried out on Na2ZrO3 which exhibited an endotherm at 1055 K indicative of a phase transition in Na2ZrO3.  相似文献   

6.
建立了一种快速降低萃取系统压力的静态络合萃取实验装置。在此装置上研究了含TBP-HNO3超临界CO2静态络合U3O8的快速气化测量方法,探索了含TBP-HNO3超临界CO2静态络合萃取U3O8的行为规律。  相似文献   

7.
为研究Gd2O3-Nd2O3-ZrO2-CeO2四元氧化物体系的高温固相反应,以Gd2O3、Nd2O3、ZrO2、CeO2混合粉体为原材料,在1 673 K和1 773 K温度下煅烧24、48、72 h,分别制备了系列样品,并对合成样品进行了XRD和SEM分析。结果表明,合成产物为具有缺陷萤石相且伴有少量烧绿石相的Gd2-xNdxZr2-xCexO7(0≤x≤2)晶体化合物。随着煅烧温度的升高和煅烧时间的延长,产物中立方烧绿石相的化合物增多,晶粒尺寸变大,且有少量未知相生成。进而探讨了锆基陶瓷固化多核素的潜在应用,并提出了未来研究的相关热点问题。  相似文献   

8.
9.
提高燃料燃耗的一个有效手段是通过增大UO2晶粒尺寸来减少元件内部气体压力,在大晶粒UO2芯块中,裂变气体到达晶界表面的距离增加,因而裂变气体的释放速率降低,元件内部气体压力的增高缓慢。本文研究了添加Cr2O3对UO2晶粒尺寸的影响。对纯UO2、添加0.5% Cr2O3及5% Cr2O3 3种配方的芯块进行了试验,在5%H2Ar保护下,以10 ℃/min和5 ℃/min的升温速率升温至1 700 ℃,然后烧结2 h或4 h,对比纯UO2芯块与添加Cr2O3的芯块发现,添加Cr2O3可有效增大晶粒尺寸;较长的烧结时间可促进晶粒长大;较低的升温速率也使晶粒长大。烧结过程产生液相烧结,液相浸润晶粒边界,促进晶粒长大。  相似文献   

10.
对Er2O3质量分数为4.32%的UO2-Er2O3可燃毒物燃料芯块的制备技术进行了初步研究。通过对比不同工艺条件(混料、成型、烧结)下,芯块的外观完整度、密度、晶粒度等性能,初步得到了UO2-Er2O3燃料芯块的制备技术。试验表明:干法球磨混合6?h,添加5‰的聚乙烯醇(PVA),300~350?MPa压力下冷压成型,1700~1750℃、H2气氛中烧结2~3?h,可得到外观完整、密度大于等于95%理论密度(T.D.)、晶粒尺寸大于8?μm的UO2?-Er2O3燃料芯块。   相似文献   

11.
Nuclear Microscopy, utilizing a 2 MeV He+ beam for channeling Rutherford Backscattering (RBS) and PIXE analysis, was used to characterise Ag-doped YBa2Cu3O7−δ thin films and measure the lateral distribution of the Ag. The samples were prepared by in situ two-beam pulsed laser deposition in order to investigate the effects of such dopings on critical current densities [1 and 2]. Films deposited at temperatures above 650°C form needle-like surface structures with a length of up to 100 μm; these tend to align with in-plane ab axis. Results for a sample prepared at a substrate temperature of 730°C and a maximum Ag concentration of 5 at.% are discussed. The needle-like structures were found to be rich in Ag and Cu, and the YBa2Cu3O7−δ film contained 0.02 at.% Ag. Broad beam PIXE-channeling results indicate that 19% of the Ag is substitutional.  相似文献   

12.
采用高温熔盐电解法合成了MoS2,为了提高MoS2对铀的吸附性能,以MoS2为基底复合Mn2O3。MoS2的片层结构有效地分散了Mn2O3的团聚,同时引进了亲铀氧基团。采用电子扫描显微镜及能谱(SEM & EDS)、X射线衍射仪(XRD)、Zeta电位仪等对Mn2O3@MoS2复合材料进行了表征,表征结果表明,高温结晶合成的Mn2O3@MoS2复合材料具有完整的微观形貌和稳定的晶体结构。通过静态吸附批实验探究了在不同变量下Mn2O3、MoS2和Mn2O3@MoS2三个材料对溶液中铀的吸附效果,结果表明,Mn2O3@MoS2的吸附性能优于Mn2O3和MoS2,在pH=5.5时,吸附平衡时间为90 min,吸附动力学遵循准二级动力学模型,吸附等温线符合Langmuir模型。Mn2O3@MoS2的单层饱和吸附容量为117.5 mg/g,在293.15~318.15 K的温度梯度中,升温有利于吸附进行。  相似文献   

13.
In this paper we report on results of surface modification in several candidate materials for inert matrix fuel hosts (MgAl2O4, MgO and Al2O3) induced by (0.5–5) MeV/amu Kr, Xe and Bi ion bombardment in the fluence range of 2 × 1010–1012 ions/cm2. The size and shape of nanoscale hillock-like defects, each of which was created by the impact of a single ion, have been studied by using atomic force microscopy (AFM) technique. It was found that mean hillock height on sapphire and spinel surfaces depends linearly on the incident electronic stopping power. The hillocks are highest in MgAl2O4, having a lower threshold for the lattice disorder in the bulk material via relaxation of electronic excitations. As a possible reason for the hillocks formation, the plastic deformation due to the defects created by the Coulomb explosion mechanism in the target subsurface layer is suggested.  相似文献   

14.
It is well known that α-Al2O3 phase has stablility performance, high permeation reduction factor and good resistance performance in liquid LiPb, which is considered as the reference tritium barrier coating in future fusion reactor. In order to study the formation mechanism of stable α-Al2O3 scales on fusion structure material, the oxidation behavior of Fe-Al aluminized coating on China Low Activated Martensitic (CLAM) steel was investigated under the oxygen partial pressure from 1 Pa to 20 kPa at the temperature of 940-980 ℃. The Al2O3 scales were analyzed by thermogravimetric analysis meter, grazing angle X-ray diffractometer, glow discharge spectrometer, focused ion beam and transmission electron microscope. A single continuous Al2O3 scales with the maximum thickness of about 2 000 nm was formed on the diffusion Fe-Al aluminized layer. Thermogravimetric analysis results show that the higher oxidation rate constant is achieved while increasing the oxygen partial pressure, and then oxidation rate constant decreases. The phase transformation of Al2O3 scales on the surface of Fe-Al aluminized coating was studied during different oxidation time ranges from 3 min to 180 min. The metastable γ-Al2O3 and α-(Al0.948Cr0.052)2O3 phases is formed in the earlier oxidation process and finally transformed to stable α-Al2O3 phase. The features of the transient α-(Al0.948Cr0.052)2O3(113) and α-Al2O3(113) were detected by GXRD and then confirmed by focused ion beam and transmission electron microscope.  相似文献   

15.
A knowledge of the threshold oxygen level in liquid sodium necessary for the formation of NaCrO2 in sodium-steel systems is useful in the operation of fast breeder reactors. There is considerable discrepancy in the data reported in the literature. In order to resolve this, the problem was approached from two sides. Direct measurement of oxygen potential in the Na(l)-Cr(s)-NaCrO2(s) phase field using the galvanic cell In, In2O3/YDT/Na, Cr, NaCrO2 yielded: o2 = −800847 + 147.85 T J/mol O2 (657–825 K). Knudsen cell-mass spectrometric measurements were carried out in the phase field NaCrO2(s)-Cr2O3(s)-Cr(s) to obtain the Gibbs energy of formation of NaCrO2 as: ΔGof,T(NaCrO2) = −870773 + 193.171 T J/mol (825–1025 K). The threshold oxygen levels deduced from Gof,T (NaCrO2) data were an order of magnitude lower than the directly measured values. The difference between the two sets of data as well as differing experimental observations from operating liquid sodium systems are explained on the basis of the influence of dissolved carbon.  相似文献   

16.
The deposition of high-quality high-Tc superconducting films on silicon wafers for future hybrid electronic devices is strongly hampered by the interdiffusion between films and substrate. This effect degrades the superconducting properties seriously and is a strong function of temperature. Since high processing temperatures are inevitable for good films, suitable buffer layers are needed to reduce the interdiffusion. We have investigated the combinations ZrO2/Si(100), BaF2/Si(100), and noble-metal/TiN/Si(100) at temperatures up to 780°C in oxidizing ambient. YBa2Cu3O7−x films have been deposited onto the buffer layers by laser ablation. Thereafter the interfaces have been analyzed by Rutherford backscattering. So far only ZrO2 has demonstrated sufficient stability to serve as a buffer layer for the laser-ablated YBa2Cu3O7−x films. All other combinations suffer from interdiffusion or oxidation.  相似文献   

17.
通过机械混合法制备了一种基于铌酸银(AgNbO_3)的耐高温放射性碘吸附剂(AgNbO_3/Al_2O_3)。和常规载银吸附剂(Ag/Al_2O_3)相比,AgNbO_3/Al_2O_3吸附剂的吸附性能更为稳定;特别是在650℃以上时,其对放射性碘的去污因子远高于常规载银吸附剂。表征测试结果表明,该吸附剂结构稳定性良好,可耐受较长时间的高温。热重测试和高温脱附试验等结果表明,碘化银在AgNbO_3/Al_2O_3吸附剂表面稳定性的提高是该吸附剂在高温时吸附性能更佳的主要原因,其将来有望用于核事故中的应急处置。  相似文献   

18.
采用石墨还原法探索了CeO2-ZrO2二元体系在不同还原温度、还原时间条件下的物相组成及结构,借助X射线衍射、红外振动光谱等手段对还原样品进行了物相表征及结构分析。实验结果表明:通过石墨还原能在较低温度(Tred=1050 ℃)、较短时间(t=24 h)内合成纯相Ce2Zr2O7.97,较传统先还原(95%Ar+5%H2,Tred≥1400℃,t>48 h)后氧化(O2或空气气氛)工艺更简单经济;Ce2Zr2O7.97相能在1050~1300 ℃、24~72 h还原条件下稳定存在并保留至室温而不发生相分解,其机制可能归因于石墨所形成的弱还原环境;Ce2Zr2O7.97相拥有与烧绿石Ce2Zr2O7相近的有序阳离子亚晶胞结构,但由于其氧空位(O3、O4、O11)被大部分氧离子所填充,导致该相结构对称性降低。本文提出的石墨还原法制备富氧相Ce2Zr2O7.97有望成为一种较传统制备工艺更简单经济的新方法,而Ce2Zr2O7.97相能在还原气氛中稳定存在,可为An2Zr2O7+x固化体的存放环境提供借鉴和参考。  相似文献   

19.
The linear differential scattering coefficients at 60 keV have been measured for UO2(C2H3O2)2 · 2H2O (uranyl-acetate) and Th(NO3)4 · 5H2O (thorium-nitrate) radioactive compounds at seven angles ranging from 60° to 120° at intervals 10°. The obtained results have been compared with relativistic and non-relativistic theoretical values.  相似文献   

20.
Polycrystalline pellets of the rare-earth sesquioxide Dy2O3 with cubic C-type rare-earth structure were irradiated with 300 keV Kr2+ ions at fluences up to 5 × 1020 Kr/m2 at cryogenic temperature. Irradiation-induced microstructural evolution is characterized using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). In previous work, we found a phase transformation from a cubic, C-type to a monoclinic, B-type (C2/m) rare-earth structure in Dy2O3 during Kr2+ ion irradiation at a fluence of less than 1 × 1020 Kr/m2. In this study, we find that the crystal structure of the top and middle regions of the implanted layer transform to a hexagonal, H-type (P63/mmc) rare-earth structure when the irradiation fluence is increased to 5 × 1020 Kr/m2; the bottom of the implanted layer, on the other hand, remains in a monoclinic phase. The irradiation dose dependence of the C-to-B-to-H phase transformation observed in Dy2O3 appears to be closely related to the temperature and pressure dependence of the phases observed in the phase diagram. These transformations are also accompanied by a decrease in molecular volume (or density increase) of approximately 9% and 8%, respectively, which is an unusual radiation damage behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号