首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Etch rates for micromachining processing-Part II   总被引:2,自引:0,他引:2  
Samples of 53 materials that are used or potentially can be used or in the fabrication of microelectromechanical systems and integrated circuits were prepared: single-crystal silicon with two doping levels, polycrystalline silicon with two doping levels, polycrystalline germanium, polycrystalline SiGe, graphite, fused quartz, Pyrex 7740, nine other preparations of silicon dioxide, four preparations of silicon nitride, sapphire, two preparations of aluminum oxide, aluminum, Al/2%Si, titanium, vanadium, niobium, two preparations of tantalum, two preparations of chromium, Cr on Au, molybdenum, tungsten, nickel, palladium, platinum, copper, silver, gold, 10 Ti/90 W, 80 Ni/20 Cr, TiN, four types of photoresist, resist pen, Parylene-C, and spin-on polyimide. Selected samples were etched in 35 different etches: isotropic silicon etchant, potassium hydroxide, 10:1 HF, 5:1 BHF, Pad Etch 4, hot phosphoric acid, Aluminum Etchant Type A, titanium wet etchant, CR-7 chromium etchant, CR-14 chromium etchant, molybdenum etchant, warm hydrogen peroxide, Copper Etchant Type CE-200, Copper Etchant APS 100, dilute aqua regia, AU-5 gold etchant, Nichrome Etchant TFN, hot sulfuric+phosphoric acids, Piranha, Microstrip 2001, acetone, methanol, isopropanol, xenon difluoride, HF+H/sub 2/O vapor, oxygen plasma, two deep reactive ion etch recipes with two different types of wafer clamping, SF/sub 6/ plasma, SF/sub 6/+O/sub 2/ plasma, CF/sub 4/ plasma, CF/sub 4/+O/sub 2/ plasma, and argon ion milling. The etch rates of 620 combinations of these were measured. The etch rates of thermal oxide in different dilutions of HF and BHF are also reported. Sample preparation and information about the etches is given.  相似文献   

2.
Etch rates for micromachining processing   总被引:5,自引:0,他引:5  
The etch rates for 317 combinations of 16 materials (single-crystal silicon, doped, and undoped polysilicon, several types of silicon dioxide, stoichiometric and silicon-rich silicon nitride, aluminum, tungsten, titanium, Ti/W alloy, and two brands of positive photoresist) used in the fabrication of microelectromechanical systems and integrated circuits in 28 wet, plasma, and plasmaless-gas-phase etches (several HF solutions, H3PO4, HNO3 +H2O+NH4F, KOH, Type A aluminum etchant, H 2O+H2O2+HF, H2O2, piranha, acetone, HF vapor, XeF2, and various combinations of SF6, CF4, CHF3, Cl2, O2 , N2, and He in plasmas) were measured and are tabulated. Etch preparation, use, and chemical reactions (from the technical literature) are given. Sample preparation and MEMS applications are described for the materials  相似文献   

3.

This present work reports on the study of controllable aluminium doped zinc oxide (AZO) patterning by chemical etching for MEMS application. The AZO thin film was prepared by RF magnetron sputtering as it is capable of producing uniform thin film at high deposition rates. X-Ray diffraction (XRD) and atomic force microscopy (AFM) characterization were done to characterize AZO thin film. The sputtered AZO thin film shows c-axis (002) orientation, low surface roughness and high crystalline quality. To pattern AZO thin film for MEMS application, wet etching was chosen due to its ease of processing with few controlling parameters. Four etching solutions were used namely: 10 % Nitric acid, 10 % Phosphoric acid, 10 % Acetic acid and Molybdenum etch solutions. For the first time, chemical etching using Molybdenum etch that consist of a mixture of CH3COOH, HNO3 and H3PO4 was characterized and reported. The effect of these acidic solutions on the undercut etching, vertical and lateral etch rate were studied. The etched AZO were characterized by scanning electron microscopy (SEM) and stylus profilometer. The investigations showed that the Molybdenum etch has the lowest undercut etching of 7.11 µm, and is highly effective in terms of lateral and vertical etching with an etch ratio of 1.30. Successful fine patterning of AZO thin films was demonstrated at device level on a surface acoustic wave resonator fabricated in 0.35 μm CMOS technology. The AZO thin film acts as the piezoelectric thin film for acoustic wave generation. Patterning of the AZO thin film is necessary for access to measurement probe pads. The working acoustic resonator showed resonance peak at 1.044 GHz at 45.28 dB insertion loss indicating that the proposed Molybdenum etch method does not adversely affect the device’s operating characteristics.

  相似文献   

4.
This letter proposes a model to explain the accused macroscopic effects caused by a small addition of a surfactant, such as Triton X-100, to a typical alkaline etchant, such as tetramethyl ammonium hydroxide (TMAH), for applications of silicon micromachining in Micro Electro Mechanical Systems (MEMS). The effects include dramatic changes in the etched profiles and small to large reductions in the etch rate and surface roughness, depending on the surface orientation of silicon and the etchant concentration. We propose that the surfactant forms a thin, adsorbed, filter layer at the silicon surface, reducing the number of reactant molecules that may reach the surface from the etchant phase and affecting the number of performed reactions. The orientation and etchant-concentration dependence of the surfactant layer thickness is determined using spectroscopic ellipsometry. The model is consistent with the most widely accepted mechanism for the etching process and overall observed phenomena in general.  相似文献   

5.

This paper reports the highest etch depth of annealed Pyrex glass achieved by wet etching in highly concentrated HF solution, using a low stress chromium–gold with assistance of photoresist as masking layer. The strategies to achieve that are: increasing the etch rate of glass and simultaneously increasing the resistance of Cr/Au mask in the etchant. By annealing the Pyrex glass and using a highly concentrated HF acid, a high etch rate can be obtained. Furthermore, a method to achieve a good resistance of the Cr/Au masking layer in the etching solution is to control the residual stress and to increase the thickness of Au deposition up to 1 μm. In addition, the presence of a hard baked photoresist can improve the etching performance. As a result, a 500-μm thick Pyrex glass wafer was etched through.

  相似文献   

6.
Microfabrication of submicron nozzles in silicon nitride   总被引:1,自引:0,他引:1  
A novel microfabrication process is described for obtaining nanometer apertures in highly cusped nozzle-like structures fabricated in silicon nitride, having apex angles of up to a few degrees. The process is based on a sacrificial etch technology using single-crystal silicon as the mold and silicon nitride as the material for the nozzle. The nitride coating on the apex of the pyramid shaped mold is selectively etched off using a polymer layer as the etch mask, which leaves the tip of the silicon mold protruding from the masked nitride, thus defining the aperture of the nozzles. The silicon mold is then removed in an alkaline etchant, which leaves the freestanding nozzles. The process is applicable to fabrication of similar structures in a variety of other materials such as silicon dioxide, boron-doped silicon, polysilicon, and refractory and noble metals. The main requirement is the preferential etchability of the mold with respect to material for the nozzles  相似文献   

7.
SiO2 and Si3N4, are usually used to mask the selected portions during etching of silicon in anisotropic etchants like KOH but polymers are expected to be very good alternative to SiO2 and Si3N4 as masking materials for MEMS applications. An adherent spin coated PMMA layer is reported to work as a mask material. It is a low temperature process, cheaper and films can be easily deposited and removed. One of the problems in its use is its adhesion to the substrate. Our previous experience in the field made us feel that sputtered PMMA will act as better mask because of its better adhesion to silicon. In the present article, a comparative study of spin coated PMMA with sputtered PMMA as an etch mask for silicon micromachining is reported. Structural and adhesive characteristics of the films are determined and compared with those available in the literature. These films deposited on silicon wafer were exposed to anisotropic etchant, KOH, to estimate the masking behavior. The maximum masking time of 32 min in 20 wt.% KOH at 80 °C was obtained for spin coated PMMA samples, which were prebaked at 90 °C. Masking time of sputter deposited PMMA films was found to be 300 min under similar conditions such as 20 wt.% KOH at 80 °C. This masking time is sufficient for fabrication of various MEMS structures, thus indicating candidature of sputtered PMMA as masking material. Various properties of the films are discussed and compared with the ones obtained through literature.  相似文献   

8.
This paper reports the highest etch depth of annealed Pyrex glass achieved by wet etching in highly concentrated HF solution, using a low stress chromium–gold with assistance of photoresist as masking layer. The strategies to achieve that are: increasing the etch rate of glass and simultaneously increasing the resistance of Cr/Au mask in the etchant. By annealing the Pyrex glass and using a highly concentrated HF acid, a high etch rate can be obtained. Furthermore, a method to achieve a good resistance of the Cr/Au masking layer in the etching solution is to control the residual stress and to increase the thickness of Au deposition up to 1 μm. In addition, the presence of a hard baked photoresist can improve the etching performance. As a result, a 500-μm thick Pyrex glass wafer was etched through.  相似文献   

9.
Real-time etch-depth measurements of MEMS devices   总被引:3,自引:0,他引:3  
An in situ, real-time process control tool was developed for MEMS deep reactive-ion etch (DRIE) fabrication. DRIE processes are used to manufacture high-aspect-ratio silicon structures up to several hundred microns thick, which would be difficult or impossible to produce by other methods. DRIE MEMS technologies promise to deliver new devices with increased performance and functionality at lower cost. A major difficulty with DRIE is the control of etch depth. Our research shows that it is possible to monitor the etch depth of various MEMS structures (holes, pillars, trenches, etc.) through measurement and analysis of the infrared reflectance spectrum. Depths as large as 150 μm have been measured. Excellent correlation is found between the etch depths determined by analysis of these measurements and those measured with an SEM. In addition to etch depth, other parameters such as the photoresist thickness (e.g., mask erosion) can be simultaneously extracted. Based on these results, an infrared-reflectance etch monitor was integrated onto a reactive ion etcher at the Berkeley Sensor and Actuator Center for real-time monitoring and end-point determination. The integrated optical metrology system demonstrated accurate real-time monitoring of the etch depth and photoresist mask erosion  相似文献   

10.
Mechanisms of etch hillock formation   总被引:1,自引:0,他引:1  
We have studied the formation of etch hillock defects during anisotropic etching of (100) silicon in KOH. Defect density is correlated with low etchant concentration and high etch temperature. Cathodic etch experiments indicate that hillocks form under conditions of decreased OH- ion concentration. The activation energy for defect formation is 1.2 eV, considerably higher than the energy associated with silicon removal. We propose a mechanism to explain hillock formation that involves nucleation by silicon redeposited from the etch solution. The incidence of hillocks in this model is the result of a competition between the forward and reverse etch reactions. Examination of defects by electron microscopy suggests that growth occurs preferentially on slow-etching planes, in agreement with the model predictions  相似文献   

11.
Dry release for surface micromachining with HF vapor-phase etching   总被引:1,自引:0,他引:1  
A new method for dry etching of silicon dioxide for surface micromachining is presented to obtain very compliant polysilicon microstructures with negligible stiction problem and to greatly simplify the overall releasing procedure as well. By etching the sacrificial silicon dioxide with hydrofluoric acid (HF) vapor instead of conventional aqueous HF solution, the need for subsequent rinsing and an elaborate drying procedure is eliminated. Condensation of water on the etch surface is first identified as the cause that prevented the success of HF vapor release in the past. Use of an anhydrous HF/CH3OH mixture under low pressure solves the problem of water condensation and enables us to take advantage of vapor-phase etching (VPE) for surface micromachining. The mechanism of oxide etching with the HF/CH3OH mixture is explained, and the developed VPE system is described and characterized. Polysilicon cantilevers up to 1200 μm in length are successfully released with this HF VPE technique. The beams tested are 2 μm thick with a 2-μm gap from the substrate, and no antistiction dimples are used. The fabricated structures are observed using both scanning electron microscopy (SEM) and an optical profilometer. The reported VPE technique provides a robust releasing method for polysilicon microstructures and is compatible with integrated circuit (IC) fabrication, even including cluster processors  相似文献   

12.
Through glass via (TGV) technology is considered to be a cost effective enabler for the integration of micro electromechanical systems and radio frequency devices. Inductively coupled plasma and Bosch etching process comprise one of the most pervasive methods for through silicon via (TSV) formation. Unfortunately an equivalent process for glass etching remains elusive. In this paper, the influence of plasma etching for fused silica glass were investigated to find the best tradeoff between etch rate and profile of TGVs. The process parameters including bias power, gas flow rate, ratio of etching gases and reaction chamber pressure using Ar/C4F8 inductively coupled plasmas were studied. The etching results show that all these three parameters have a significant impact on the etch rate. Furthermore, the adjustment including total flow rate and ratio of Ar/C4F8 and chamber pressure can be used to control the via profile. Constant fused silica glass etch rate greater than 1 μm/min was obtained when chiller temperature was 40 °C with etching time of 60 min. The profile angle of TGVs with nearly 90° was also achieved.  相似文献   

13.
A novel thin film (micrometer thickness) shape memory alloy (SMA) micro actuator is presented in this paper. The thin film SMA with composition of approximately 50:50 nickel titanium (NiTi) is sputter-deposited onto a silicon wafer in an ultra high vacuum system. Transformation temperatures of the NiTi film are determined by measuring the residual stress as a function of temperature. The transformation temperature is independent of the presence of chromium (Cr) used as an adhesion layer, or being exposed to air before annealing. A mixture of hydrofluoric acid (HF), nitric acid (HNO3) and deionized (DI) water is used to etch the film. Different etch masks are evaluated to protect the NiTi film during the etching. Among the masks tested, a thick photoresist (AZ-4620) produces the best result. The NiTi membrane is hot-shaped into a three-dimensional (3-D) dome shape using a stainless-steel jig. Results indicate the membrane exhibits two-way effect. The performance of the SMA micro actuator is characterized with a laser measurement system for deflection versus input power and frequency response  相似文献   

14.
Low temperature Si/Si wafer direct bonding using a plasma activated method   总被引:1,自引:0,他引:1  
Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper presents a low temperature wafer direct bonding process assisted by O2 plasma. Silicon wafers were treated with wet chemical cleaning and subsequently activated by O2 plasma in the etch element of a sputtering system. Then, two wafers were brought into contact in the bonder followed by annealing in N2 atmosphere for several hours. An infrared imaging system was used to detect bonding defects and a razor blade test was carried out to determine surface energy. The bonding yield reaches 90%–95% and the achieved surface energy is 1.76 J/m2 when the bonded wafers are annealed at 350 °C in N2 atmosphere for 2 h. Void formation was systematically observed and elimination methods were proposed. The size and density of voids greatly depend on the annealing temperature. Short O2 plasma treatment for 60 s can alleviate void formation and enhance surface energy. A pulling test reveals that the bonding strength is more than 11.0 MPa. This low temperature wafer direct bonding process provides an efficient and reliable method for 3D integration, system on chip, and MEMS packaging.  相似文献   

15.
A simple microfabrication process to make an uncooled aluminum/silicon dioxide bi-material microcantilever infrared (IR) detector using silicon bulk micromachining technology is presented in this work. This detector is based on high banding of the microcantilever due to the large dissimilar in thermal expansion coefficients between the two materials. It consists of a 1 μm SiO2 layer deposited by 200 nm thin Al layer. Since no sacrificial layer is used in this process, complexity related to releasing sacrificial layer is avoided. Moreover Al is protected in Si etchant using dual-doped tetramethyl ammonium hydroxide. The other advantage of this process is that only three masks are used with four photolithography process. Thermal and thermal mechanical behaviors of this structure are obtained using finite element analysis, and the maximum temperature and displacement at the end of cantilever at 100 pW/μm2 absorbed IR power density on top surface are 7.82°K and 1.924 μm, respectively.  相似文献   

16.
Flexible micro temperature and humidity sensors on parylene thin films were designed and fabricated using a micro-electro-mechanical-systems (MEMS) process. Based on the principles of the thermistor and the ability of a polymer to absorb moisture, the sensing device comprised gold wire and polyimide film. The flexible micro sensors were patterned between two pieces of parylene thin film that had been etched using O2 plasma to open the contact pads. The sacrificial Cr spacer layer was removed from the Cr etchant to release the flexible temperature and humidity sensors from the silicon substrate. Au was used to form the sensing electrode of the sensors while Ti formed the adhesion layer between the parylene and Au. The thickness of the device was 7 ± 1 μm, so the sensors attached easily to highly curved surfaces. The sensitivities of the temperature and humidity sensor were 4.81 × 10−3 °C−1 and 0.03 pF/%RH, respectively. This work demonstrates the feasibility and compatibility of thin film sensor applications based on flexible parylene. The sensor can be applied to fuel cells or components that must be compressed.  相似文献   

17.
Hybrid postprocessing etching for CMOS-compatible MEMS   总被引:2,自引:0,他引:2  
A major limitation in the fabrication of microstructures as a postCMOS (complimentary metal oxide semiconductor) process has been overcome by the development of a hybrid processing technique, which combines both an isotropic and anisotropic etch step. Using this hybrid technique, microelectromechanical structures with sizes ranging from 0.05 to ~1 mm in width and up to 6 mm in length were fabricated in CMOS technology. The mechanical robustness of the microstructures determines the limit on their dimensions. Examples of an application of this hybrid technique to produce microwave coplanar transmission lines are presented. The performance of the micromachined microwave coplanar waveguides meets the design specifications of low loss, high phase velocity, and 50 Ω characteristic impedance. Various commonly used etchants were investigated for topside maskless postmicromachining of 〈100〉 silicon wafers to obtain the microstructures. The isotropic etchant used is gas-phase xenon difluoride (XeF2), while the wet anisotropic etchants are either ethylenediamine-pyrocatechol (EDP) or tetramethylammonium hydroxide (TMAH). The advantages and disadvantages of these etchants with respect to selectivity, reproducibility, handling, and process compatibility are also described  相似文献   

18.
 Inductively coupled plasma reactor (ICP) has been used to etch holes, trenches and other shapes completely through 380 and 525 μm thick silicon wafers. Bosch/STS process of gas flow pulsing with SF6 etch step and C4F8 sidewall passivation step was employed. Etch rate reduction due to aspect ratio dependence and pattern size and shape effects have been explored. Etch stop has been studied both on bulk and SOI wafers. Notching effect was observed for high aspect ratio features but it was absent in large, low aspect ratio features. Aluminum etch stop layer has been shown to eliminate notching. Received: 7 July 1999/Accepted: 22 October 1999  相似文献   

19.
A novel method for fabricating a self-aligned electrostatic dual comb drive using a multi-layer SOI process is developed. The present method utilizes four aligned masks, greatly simplify the existing SOI-MEMS fabrication methods in manufacturing optical MEMS devices. Here, the actuating structure consists of fixed combs and moving combs that are composed of single crystal silicon, nitride and polysilicon. One mask is used to provide a deep etching to etch polysilicon, nitride and single crystal silicon respectively. The nitride separates polysilicon and single crystal silicon and provides an additional dielectric for the purpose of producing bi- directional motion upon applying electrostatic forces. A dual comb drive actuator with optical structures was fabricated with the developed process. The actuator is capable of motion 250 nm downward and 480 nm upward with 30 V applied voltage at 4 kHz frequency. The dynamic characteristics of the first and the second resonant frequency of the dual comb-drive actuator are 10.5 kHz and 23 kHz respectively. Experimental results indicated that the measured data agreed well with simulation results using the ANSOFT Maxwell® 2D field simulator, ANSYS® and Coventor Ware®.  相似文献   

20.
In the present work, silicon based micromixer microfluidic devices have been fabricated in silicon substrates of 2-inch diameter. These devices are of 2-input and 1-output port configuration bearing channel depth in the range 80–280 µm. Conventional reactive ion etching (RIE) process used in integrated circuit fabrication was modified to get reasonably high silicon etch rate (~1.2 µm/min). It was anticipated that devices with channel depth in excess of 150 µm would become weak and susceptible to breakage. For such devices, a bonded pair of silicon having a 0.5 µm SiO2 at the bonded interface was used as the starting substrate. The processed silicon wafer bearing channels was anodically bonded to a Corning® 7740 glass plate of identical size for fluid confinement. Through-holes for input/output ports were made either in Si substrate or in glass plate before carrying out anodic bonding. Micro-channels were characterized using stylus and optical profiler. Surface roughness of the channel was observed to increase with increasing channel depth. The devices were packaged in a polycarbonate housing and pressure drop versus flow rate measurements were carried out. Reynolds number and friction factor were calculated for devices with 82 µm deep channels. It was observed that up to 25 sccm of gas and 10 ml/min of liquid, the flow was laminar in nature. It is envisaged that using bonded silicon wafer pair and combination of RIE and wet etching, it is possible to get an etch stop at the SiO2 layer of the bonded silicon interface with much smaller value of surface roughness rendering smooth channel surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号