首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research proposes incorporating assembly aspects associated with a product into the design of Cellular manufacturing System (CMS). The literature on CMS design implicitly assumes that finished part is the end product by itself. In practice, often, manufacturers produce parts which are assembled into a finished product. The methodology employs a part–subassembly matrix derived from the product structure in addition to the part–machine matrix. A mathematical programming model is developed which determines an assignment of parts, machines and subassemblies to manufacturing cells. The proposed model employs a new similarity coefficient between part, machine and subassembly. The model resulted in a nonlinear program with 0-1 variables. A case study has been analyzed based on a published part–machine matrix and a randomly generated product structure. The analysis reveals that it may be required to forego some of the efficiencies of Group Technology (GT) in order to achieve integration of assembly operations with production of parts. From a practical stand point of view it is preferred to have a system design which has a mix of GT and integration efficiencies, compared to a design which outperforms on GT criteria and completely lacks integration of assembly operations with production of parts.  相似文献   

2.
In this paper, we study the formation of general Group Technology cells based on the operation requirements of parts and operation capabilities of machines. Parts are first grouped into families by using a similarity coefficient based on common operation types. An integer model is then developed to solve the problem of machine group selection. The model takes into account machine cost, variable production cost, setup cost, and intracell material handling cost. A greedy heuristic, a minimum increment heuristic and a simulated annealing heuristic are proposed for solving the model more efficiently. The computational results have shown that the heuristic methods perform well when compared to the optimal solutions. The effect of changing cost structure on the performance of heuristic procedures is also investigated.  相似文献   

3.
Manufacturing cell formation is the first step in the design of cellular manufacturing system. The primary objective of this step is to cluster machines into machine cells and parts into part families so that the minimum of intercell trips will be achieved. This paper will be focused on the configuration of machine cells considering three types of initial machine-part matrix: binary (zero-one) matrix, production volume matrix, and operation time matrix. The similarity measure uses only information from these types of matrix. A pure combinatorial programming formulation will be developed to maximize the sum of similarity coefficients between machine/part pairs. An e-Learning tool/application to help industrial students and engineers for enhancing their cell formation capability is proposed. This tool is designed to include a novel similarity coefficient-based heuristic algorithm for solving the cell formation problem. To determine the performance of the proposed tool, comparison is made with a well-known tool along a case study.  相似文献   

4.
This paper presents a linear assignment algorithm for machine-cell and part-family formation for the design of cellular manufacturing systems. The present approach begins with the determination of part-family or machine-cell representatives by means of comparing similarity coefficients between parts or machines and finding a set of the least similar parts or machines. Using the group representatives and associated similarity coefficients, a linear assignment model is formulated for solving the formation problem by allocating the remaining parts or machines and maximizing a similarity index. Based on the formulated linear assignment model, a group formation algorithm is developed. The results of a comparative study based on multiple performance criteria and many existing data sets show that the present approach is very effective and efficient, especially in dealing with large-sized problems.  相似文献   

5.
Group technology tries to exploit the similarity between parts and machines and forms machine groups and part families. Just-in-time production tries to manufacture the parts whenever required there by reducing the inventory and eliminating waste.

In order to apply JIT in a GT cell, the cell is divided into modules and parts move from one module to another in small transfer batches. This paper addresses the problem of operator allocation for the modules and sequencing the variety of parts with the objective of minimizing the makespan.

Six different methodologies have been presented and the results compared in terms of makespan and computational time.  相似文献   


6.
Flexible job-shop scheduling problem (FJSP) is an extension of the classical job-shop scheduling problem. FJSP is NP-hard and mainly presents two difficulties. The first one is to assign each operation to a machine out of a set of capable machines, and the second one deals with sequencing the assigned operations on the machines. This paper proposes a parallel variable neighborhood search (PVNS) algorithm that solves the FJSP to minimize makespan time. Parallelization in this algorithm is based on the application of multiple independent searches increasing the exploration in the search space. The proposed PVNS uses various neighborhood structures which carry the responsibility of making changes in assignment and sequencing of operations for generating neighboring solutions. The results obtained from the computational study have shown that the proposed algorithm is a viable and effective approach for the FJSP.  相似文献   

7.
This paper reports a new genetic algorithm (GA) for solving a general machine/part grouping (GMPG) problem. In the GMPG problem, processing times, lot sizes and machine capacities are all explicitly considered. To evaluate the solution quality of this type of grouping problems, a generalized grouping efficacy index is used as the performance measure and fitness function of the proposed genetic algorithm. The algorithm has been applied to solving several well-cited problems with randomly assigned processing times to all the operations. To examine the effects of the four major factors, namely parent selection, population size, mutation rate, and crossover points, a large grouping problem with 50 machines and 150 parts has been generated. A multi-factor (34) experimental analysis has been carried out based on 324 GA solutions. The multi-factor ANOVA test results clearly indicate that all the four factors have a significant effect on the grouping output. It is also shown that the interactions between most of the four factors are significant and hence their cross effects on the solution should be also considered in solving GMPG problems.  相似文献   

8.
Manufacturing cell formation with production data using neural networks   总被引:1,自引:0,他引:1  
Batch type production strategies need adoption of cellular manufacturing (CM) in order to improve operational effectiveness by reducing manufacturing lead time and costs related to inventory and material handling. CM necessitates that parts are to be grouped into part families based on their similarities in manufacturing and design attributes. Then, machines are allocated into machine cells to produce the identified part families so that productivity and flexibility of the system can be improved. Zero-one part-machine incidence matrix (PMIM) generated from route sheet information is commonly presented as input for clustering of parts and machines. An entry of ‘1’ in PMIM indicates that the part is visiting the machine and zero otherwise. The output is generated in the form of block diagonal structure where each block represents a machine cell having more than one machines and a part family. The major limitations of this approach lies in the fact that important production factors like operation time, sequence of operations, and lot size of the parts are not accounted for. In this paper, an attempt has been made to propose a clustering methodology based on adaptive resonance theory (ART) for addressing these issues. Initially, a methodology considering only the operation sequence of the parts has been proposed. Then, the methodology is suitably modified to deal with combination of operation sequence and operation time of the parts to address generalized cell formation (CF) problem. A new performance measure is proposed to quantify the performance of the proposed methodology. The performance of the proposed algorithm is tested with benchmark problems from open literature and the results are compared with the existing methods. The results clearly indicate that the proposed methodology outperforms the existing methods in most cases.  相似文献   

9.
We introduced a spectral clustering algorithm based on the bipartite graph model for the Manufacturing Cell Formation problem in [Oliveira S, Ribeiro JFF, Seok SC. A spectral clustering algorithm for manufacturing cell formation. Computers and Industrial Engineering. 2007 [submitted for publication]]. It constructs two similarity matrices; one for parts and one for machines. The algorithm executes a spectral clustering algorithm on each separately to find families of parts and cells of machines. The similarity measure in the approach utilized limited information between parts and between machines. This paper reviews several well-known similarity measures which have been used for Group Technology. Computational clustering results are compared by various performance measures.  相似文献   

10.
A cellular manufacturing system (CMS) is considered an efficient production strategy for batch type production. A CMS relies on the principle of grouping machines into machine cells and grouping parts into part families on the basis of pertinent similarity measures. The bacteria foraging algorithm (BFA) is a newly developed computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work studies the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem considering the operation sequence. In addition, a newly developed BFA-based optimization algorithm for CF based on operation sequences is discussed. In this paper, an attempt is made to solve the CF problem, while taking into consideration the number of voids in the cells and the number of inter-cell travels based on operational sequences of the parts visited by the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with that of a number of algorithms that are most commonly used and reported in the corresponding scientific literature, such as the CASE clustering algorithm for sequence data, the ACCORD bicriterion clustering algorithm and modified ART1, and using a defined performance measure known as group technology efficiency and bond efficiency. The results show better performance of the proposed algorithm.  相似文献   

11.
The cellular manufacturing system (CMS) is considered as an efficient production strategy for batch type production. The CMS relies on the principle of grouping machines into machine cells and grouping machine parts into part families based on pertinent similarity measures. The bacteria foraging algorithm (BFA) is a new in development computation technique extracted from the social foraging behavior of Escherichia coli (E. coli) bacteria. Ever since Kevin M. Passino invented the BFA, one of the main challenges has been employment of the algorithm to problem areas other than those for which the algorithm was proposed. This research work inquires the first applications of this emerging novel optimization algorithm to the cell formation (CF) problem. In addition, a newly developed BFA-based optimization algorithm for CF is discussed. In this paper, an attempt is made to solve the cell formation problem meanwhile taking into consideration number of voids in cells and a number of exceptional elements based on operational time of the parts required for processing in the machines. The BFA is suggested to create machine cells and part families. The performance of the proposed algorithm is compared with a number of algorithms that are most commonly used and reported in the corresponding scientific literature such as similarity coefficients methods (SCM), rank order clustering (ROC), ZODIAC, GRAFICS, MST, GATSP, GP, K-harmonic clustering (KHM), K-means clustering, C-link clustering, modified ART1, GA (genetic algorithm), evolutionary algorithm (EA), and simulated annealing (SA) using defined performance measures known as modified grouping efficiency and grouping efficacy. The results lie in favor of better performance of the proposed algorithm.  相似文献   

12.
Cell formation is an important problem in the design of a cellular manufacturing system. Most of the cell formation methods in the literature assume that each part has a single process plan. However, there may be many alternative process plans for making a specific part, specially when the part is complex. Considering part multiple process routings in the formation of machine-part families in addition to other production data is more realistic and can produce more independent manufacturing cells with less intercellular moves between them. A new comprehensive similarity coefficient that incorporates multiple process routings in addition to operations sequence, production volumes, duplicate machines, and machines capacity is developed. Also, a clustering algorithm for machine cell formation is proposed. The algorithm uses the developed similarity coefficient to calculate the similarity between machine groups. The developed similarity coefficient showed more sensitivity to the intercellular moves and produced better machine grouping.  相似文献   

13.
In this study, a two-machine flowshop producing identical parts is considered. Each of the identical parts is assumed to require a number of manufacturing operations, and the machines are assumed to be flexible enough to perform different operations. Due to economical or technological constraints, some specific operations are preassigned to one of the machines. The remaining operations, called flexible operations, can be performed on either one of the machines, so that the same flexible operation can be performed on different machines for different parts. The problem is to determine the assignment of the flexible operations to the machines for each part, with the objective of maximizing the throughput rate. We consider various cases regarding the number of parts to be produced and the capacity of the buffer between the machines. We present solution methods for each variant of the problem.  相似文献   

14.
We present an efficient iterative heuristic procedure for solving the integrated layout design and product flow assignment problem. The layout design decisions involve planar location of unequal-area machines with duplicates. The product flows are assigned to machines according to the product processing routes. The integrated decision problem is a nonlinear mixed integer model which cannot be efficiently solved using classical methods for large problems. We propose a novel integrated heuristic procedure based on the alternating heuristic, a perturbation algorithm and sequential location heuristic. Since the alternating heuristic between facility layout design and product-machine assignment sub-problems terminates with local optima, we developed a perturbation algorithm based on assignment decisions. The results of an experimental study show that proposed procedure is both efficient and effective in identifying quality solutions for small to very large-sized problems.  相似文献   

15.
A genetic algorithm (GA) metaheuristic-based cell formation procedure is presented in this paper. The cell formation problem solved here is to simultaneously group machines and part-families into cells so that intercellular movements are minimized. An option for considering the minimization of cell load variation is included and another, which combines minimization of intercellular movements and cell load-variation, exists. The algorithm solves this problem through improving a cell configuration using the GA metaheuristic. The designer is allowed to specify the number of cells required a priori and impose lower and upper bounds on cell size. This makes the GA scheme flexible for solving the cell formation problems. The solution procedure was found to perform well on tested large-scale problems and published data sets. Moreover, the proposed procedure compares very favorably to a well-known algorithm, and another TSP-based heuristic available in the literature. The results of computational tests presented are very encouraging.  相似文献   

16.
A number of research papers have used different types of similarity and dissimilarity coefficients for determining part families. In cellular manufacturing systems, most machines are capable of performing more than one operation, which makes parts rerouting feasible. When a part is rerouted, it affects the cell performance. Most of the suggested approaches in the literature develop a new similarity coefficient based on mathematical analysis, however, these methods tend to disregard alternative routes during machine failure. The main objective of this paper is to identify part families based on a new similarity coefficient which considers the number of alternative routes available during machine failure. Based on the new similarity coefficient, the part families were identified by using a p-median model.  相似文献   

17.
One major problem in cellular manufacturing is the grouping of component parts with similar processing requirements into part families, and machines into manufacturing cells to facilitate the manufacturing of specific part families assigned to them. The objective is to minimize the total inter-cell and intra-cell movements of parts during the manufacturing process. In this paper, a mathematical model is presented to describe the characteristics of such a problem. An approach based on the concept of genetic algorithms is developed to determine the optimal machine-component groupings. Illustrative examples are used to demonstrate the efficiency of the proposed approach. Indeed, the results obtained show that the proposed genetic approach is a simple and efficient means for solving the machine-component grouping problem.  相似文献   

18.
In order to simplify the complex product flexible scheduling problem with constraint between jobs, a new hierarchical scheduling algorithm based on improved processing operation tree is presented. Aiming at the routing problem, short-time strategy and machine-balance strategy are adopted to assign each operation to a machine out of a set of machines. And in order to solve the sequencing problem, the allied critical path method is first adopted to confirm the scheduling sequence of operations, and then operations are divided into dependent operations and independent ones according to their characteristics. For the dependent operations, forward greedy rule is adopted in order to make the completion time of operation as soon as possible and the scheduling algorithm of shortening idle time is adopted by analyzing the characteristics of the independent operations. Experiment shows that the proposed algorithm solves for the first time the complex product flexible scheduling problem with constraint between jobs.  相似文献   

19.
Fuzzy-set-based machine-cell formation in cellular manufacturing   总被引:2,自引:0,他引:2  
In cellular manufacturing, manufacturing cells are designed based on the assumption that only one machine is used for a particular operation. However, there can be alternative machines to process an operation. In this article, a fuzzy-set-based machine-cell formation algorithm for cellular manufacturing is presented. The fuzzy logic is employed to express the degree of appropriateness when alternative machines are specified to process a part shape. For machine grouping, the similarity-coefficient-based approach is used. The algorithm produces efficient machine cells and part families, which maximize the similarity values. This algorithm can also be used when the intercellular movement costs should be minimized. A numerical example is given to illustrate this approach.  相似文献   

20.
This paper deals with the cellular manufacturing system (CMS) that is based on group technology (GT) concepts. CMS is defined as identifying the similar parts that are processed on the same machines and then grouping them as a cell. The most proposed models for solving CMS problems are focused on cell formation and intracellular machine layout problem while cell layout is considered in few papers. In this paper we apply the multiple attribute decision making (MADM) concept and propose a two-stage method that leads to determine cell formation, intracellular machine layout and cell layout as three basic steps in the design of CMS. In this method, an initial solution is obtained from technique for order preference by similarity to the ideal solution (TOPSIS) and then this solution is improved. The results of the proposed method are compared with well-known approaches that are introduced in literature. These comparisons show that the proposed method offers good solutions for the CMS problem. The computational results are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号