首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluoropolymers are attractive niche polymers used in high added value materials for high-tech applications in aerospace, electronics, coatings, membranes, cables, and the automotive industries. Among them, VDF- and TrFE-based copolymers exhibit remarkable electroactive properties allowing their incorporation into a wide range of devices such as printed memories, sensors, actuators, artificial muscles, and energy storage devices. In a first section, a detailed overview of semi-crystalline poly(VDF-co-TrFE) copolymers and of their ferroelectric (FE) properties from the point of view of polymer chemists is supplied. In addition to the polymer microstructure that may sometimes be controlled or influenced by the synthesis strategies, physical properties such as the phase transitions, and electroactivity are also affected by processing, such as annealing for example, and film thickness for example. Building on the conclusions and understanding obtained from the first section, the effect of the introduction of a termonomer (leading to poly(VDF-ter-TrFE-ter-M) terpolymers) is detailed in a second section of this review. Modifying the terpolymer chain microstructure has a major impact on the crystalline phase of the terpolymers that may result in a relaxor-ferroelectric behavior (RFE). The distribution of the termonomer along the polymer chain, the capacity of the termonomer units to enter the crystal lattice, as well as its dipole moment govern in large part the terpolymer electroactive properties. Poly(VDF-ter-TrFE-ter-CFE) and poly(VDF-ter-TrFE-ter-CTFE) terpolymers appeared to be the best candidates for RFE properties and were thus the most studied. In two following sections, the block or graft architectures of VDF- and TrFE- based copolymers, and the various crosslinking strategies used so far for such copolymers are described. Chemical modification is indeed a very powerful tool to tune electroactive properties of copolymers or to impart additional properties. Finally, in the last section, a few examples of emerging applications for these fluorinated electroactive polymers (EAPs) are briefly discussed. This review aims to provide a comprehensive report on the use of polymer chemistry as a tool to produce better electroactive fluorinated polymers, and highlights possible opportunities and perspectives for future progress in this field. Research in this interdisciplinary field requires different kinds of expertise, ranging from organic and polymer chemistries, polymer films engineering, physics of semi-crystalline polymers and electroactivity, to the design and fabrication of electronic devices.  相似文献   

2.
Regioregular poly(3-alkylthiophene)s (rrP3ATs) are an important class of pi-conjugated polymers that can be used in plastic electronic devices such as solar cells and field-effect transistors. rrP3ATs can be ordered in three dimensions: conformational ordering along the backbone, pi-stacking of flat polymer chains, and lamellar stacking between chains. All of these features lead to the excellent electrical properties of these materials. Creative molecular design and advanced synthesis are critical in controlling the properties of the materials as well as their device performance. This Account reports the advances in molecular design of new functional polythiophenes as well as the associated polymerization methods. Many functionalized regioregular polythiophenes have been designed and synthesized and show fascinating properties such as high conductivity, mobility, chemosensitivity, liquid crystallinity, or chirality. The methods for the synthesis of rrP3ATs are also applicable to other functional side chains. Di- and triblock copolymers consisting of rrP3AT and polyacrylate or polystyrene have also been successfully synthesized, which can facilitate the assembly of the polythiophene segments. The synthesis of rrP3ATs has evolved into a simple and economical system in which the synthesis can be carried out quickly at room temperature and is thus suitable for large-scale manufacturing. Intensive study has revealed that the regioregular polymerization of 3-alkylthiophenes proceeds by a chain-growth mechanism and can be made into a living system. This feature enables precise control of the molecular weight and facile end-group functionalization of the polymer chains, leading to tailor-made regioregular polythiophenes for specific applications. In addition, researchers have recently designed and synthesized regiosymmetric polythiophenesthese are regioregular but not coupled in a head-to-tail fashionby various methods. These reports indicate that these regiosymmetric polymers show very high mobilities when used in field-effect transistors due to their highly ordered structure. The remarkable performance of regioregular polythiophenes in recent years has allowed for the rapid development in printable electronics and seems destined to lead to further advances in this field.  相似文献   

3.
Intrinsically conductive polymers (ICPs) have attracted significant attention in recent decades because of their wide range of potential applications in various fields such as chemistry, physics, electronics, optics, materials, and biomedical sciences. In particular, conjugated polythiophene (PTh) and its derivatives stand out as the most promising members of the conjugated polymer family because of their unique electrical behavior, excellent environmental and thermal stability, low-cost synthesis, and mechanical strength. However, similar to other π-conjugated polymers the main drawback of unsubstituted PTh is the lack of solubility due to its strong interchain interactions, resulting in limited processability. Various procedures have been invoked to overcome these restrictions, such as side chain functionalization, the synthesis of PTh copolymers with processable polymers, and combination of both of these strategies. Because of large number of publications on the chemical modification of polythiophene, this review is focused on progress in the synthesis of polythiophene copolymers with processable polymers. The properties of the polythiophene copolymers and their applications are also highlighted.  相似文献   

4.
Collagen powder and goat skins were grafted with different vinyl monomers using the ceric ion technique. The graft copolymers were characterized by infrared spectra and electron microscopy. The collagen–vinyl graft copolymers were hydrolyzed by both acid and enzymatic hydrolysis, and the grafted vinyl polymer side chains were isolated. In the grafted poly(methyl methacrylate) (PMMA) side chains isolated by acid hydrolysis, the characteristic amide absorption bands at 1550 and 1660 cm?1 were not seen prominently. However, in PMMA side chains isolated by enzymatic methods, the amide absorption bands were more prominent as these isolated side chain polymers contained longer fragments of the peptide backbone attached to them. Electron-microscopic observations of grafted collagen fibrils and ultrathin sections of grafted goat skin fibrils did not show any cross-striations. These various evidences indicate that the polymers formed on collagen have penetrated into the fibrils and that they were chemically bound to the collagen molecules.  相似文献   

5.
We live in a world full of synthetic materials, and the development of new technologies builds on the design and synthesis of new chemical structures, such as polymers. Synthetic macromolecules have changed the world and currently play a major role in all aspects of daily life. Due to their tailorable properties, these materials have fueled the invention of new techniques and goods, from the yogurt cup to the car seat belts. To fulfill the requirements of modern life, polymers and their composites have become increasingly complex. One strategy for altering polymer properties is to combine different polymer segments within one polymer, known as block copolymers. The microphase separation of the individual polymer components and the resulting formation of well defined nanosized domains provide a broad range of new materials with various properties. Block copolymers facilitated the development of innovative concepts in the fields of drug delivery, nanomedicine, organic electronics, and nanoscience. Block copolymers consist exclusively of organic polymers, but researchers are increasingly interested in materials that combine synthetic materials and biomacromolecules. Although many researchers have explored the combination of proteins with organic polymers, far fewer investigations have explored nucleic acid/polymer hybrids, known as DNA block copolymers (DBCs). DNA as a polymer block provides several advantages over other biopolymers. The availability of automated synthesis offers DNA segments with nucleotide precision, which facilitates the fabrication of hybrid materials with monodisperse biopolymer blocks. The directed functionalization of modified single-stranded DNA by Watson-Crick base-pairing is another key feature of DNA block copolymers. Furthermore, the appropriate selection of DNA sequence and organic polymer gives control over the material properties and their self-assembly into supramolecular structures. The introduction of a hydrophobic polymer into DBCs in aqueous solution leads to amphiphilic micellar structures with a hydrophobic polymer core and a DNA corona. In this Account, we discuss selected examples of recent developments in the synthesis, structure manipulation and applications of DBCs. We present achievements in synthesis of DBCs and their amplification based on molecular biology techniques. We also focus on concepts involving supramolecular assemblies and the change of morphological properties by mild stimuli. Finally, we discuss future applications of DBCs. DBC micelles have served as drug-delivery vehicles, as scaffolds for chemical reactions, and as templates for the self-assembly of virus capsids. In nanoelectronics, DNA polymer hybrids can facilitate size selection and directed deposition of single-walled carbon nanotubes in field effect transistor (FET) devices.  相似文献   

6.
Work concerning the incorporation of carbon nanotubes (CNTs) in organic semiconducting polymers have now been reported by many research groups, and the electrical properties of polymer/CNT nanocomposites have been extensively studied. In this work, we present a simple procedure to tune the charge transport properties of planar organic polymer films based on poly(3‐hexylthiophene) (P3HT). The polymer/CNT composites are simultaneously processed and oriented from solution using an electric field assisted orientation technique. We first study the behavior of CNTs alone during the alignment procedure and emphasize the main experimental parameters that drive their final orientation on the substrate. By quantitatively analyzing the CNT angular distribution on the substrate, we show that the dielectric constant of the solvent used to disperse and deposit the CNTs is crucial to ensure an efficient orientation, and that a dielectrophoresis‐like orientation procedure occurs. The transposition of this approach to planar P3HT/CNT composites is made by investigating the electric properties in ambient conditions of aligned and non‐aligned devices. Current–voltage characteristics show a drastic increase of the composite conductivity upon addition and alignment of CNTs. Field‐effect transistor charge mobilities are improved by an order of magnitude upon addition of CNT (1 wt%) in P3HT, and another decade is gained using the optimized alignment parameters, without any additional annealing. These results demonstrate the strong potentialities of our approach in the field of printed electronics and organic optoelectronics. © 2013 Society of Chemical Industry  相似文献   

7.
The prospect of using low cost, high throughput material deposition processes to fabricate organic circuitry and solar cells continues to drive research towards improving the performance of the semiconducting materials utilized in these devices. Conjugated aromatic polymers have emerged as a leading candidate semiconductor material class, due to their combination of their amenability to processing and reasonable electrical and optical performance. Challenges remain, however, to further improve the charge carrier mobility of the polymers for transistor applications and the power conversion efficiency for solar cells. This optimization requires a clear understanding of the relationship between molecular structure and both electronic properties and thin film morphology. In this Account, we describe an optimization process for a series of semiconducting polymers based on an electron rich indacenodithiophene aromatic backbone skeleton. We demonstrate the effect of bridging atoms, alkyl chain functionalization, and co-repeating units on the morphology, molecular orbital energy levels, charge carrier mobility, and solar cell efficiencies. This conjugated unit is extremely versatile with a coplanar aromatic ring structure, and the electron density can be manipulated by the choice of bridging group between the rings. The functionality of the bridging group also plays an important role in the polymer solubility, and out of plane aliphatic chains present in both the carbon and silicon bridge promote solubility. This particular polymer conformation, however, typically suppresses long range organization and crystallinity, which had been shown to strongly influence charge transport. In many cases, polymers exhibited both high solubility and excellent charge transport properties, even where there was no observable evidence of polymer crystallinity. The optical bandgap of the polymers can be tuned by the combination of the donating power of the bridging unit and the electron withdrawing nature of co-repeat units, alternating along the polymer backbone. Using strong donors and acceptors, we could shift the absorption into the near infrared.  相似文献   

8.
HPAM-g-P(NIPA-co-DMAM)的合成与温敏行为   总被引:1,自引:0,他引:1       下载免费PDF全文
白荣光  郭睿威  蔡超 《化工学报》2007,58(9):2388-2394
利用端基转换法合成了不同组成及相对分子质量的端丙烯酰胺基聚(N-异丙基丙烯酰胺-co-N,N-二甲基丙烯酰胺)[poly(NIPA-co-DMAM), PID]大分子单体;与丙烯酰胺聚合后再水解,得到以PID为侧链,浊点在37~63℃的接枝共聚物[HPAM-g-P(NIPA-co-DMAM), HGPID]。利用1H NMR及端基分析等对大分子单体和接枝物的组成及结构进行了表征;考察了接枝共聚物侧链的组成和链长、共聚物质量浓度和外加盐浓度等因素对其水溶液的热敏特性及温敏增稠性的影响。  相似文献   

9.
A series of conjugated copolymers (P1 and P2-CN-P4-CN) were prepared, in which two kinds of side chains were designed: one was the repeating units similar to that of P3HT, with the aim to increase the compatible with PC61BM and the hole mobility; another one was the acceptor groups connected with the electron-rich backbone through the conjugated 3,4-ethylenedioxythiophene bridge, in order to broaden the absorption and lower the LUMO level. By controlling the ratios of these two kinds of side chains, the absorption band of the resultant conjugated polymers could be fine-tuned, while their energy levels nearly remained unchanged. As the result, the performance of the corresponding devices increased first, then decreased, indicating that there would be a balance between the different function of these two side chains.  相似文献   

10.
Recent developments in the synthesis and application of hole conducting oligomeric and polymeric triarylamines are reviewed. The materials are classified as Star‐shaped molecules, Spiros and dendrimers, Side‐chain polymers, and Main‐chain polymers and copolymers. This paper concentrates on the research results of our group on the synthesis of a variety of such compounds, their structure‐property relationship and their application in devices like organic light emitting diodes, solar cells and photorefractive systems. The thermal properties and electronic properties of these compounds were varied by changing the chemical structure and nature of substituents. In the case of low molecular weight star‐shaped molecules the glass transition temperature could be increased to above 140°C by suitable structural design. Similarly, for polymeric triarylamines the variation of glass transition temperature was achieved over a wide range from 92 to 237°C. This is especially necessary for the wide spectrum of applications of these materials as hole conductors in low‐Tg photorefractive composites to high‐Tg materials in OLEDs. Moreover, the electronic energy levels and the band gap in these compounds can be manipulated to optimize the hole injection or electron transfer or emission properties or even photocurrent generation to make them suitable for various applications. Especially, the concept of copolymerization with other functional monomers results in multifunctional copolymers with good hole injection and transport properties. The polymer networks involving triarylamine structures are not included in this Review, because this constitutes the subject‐matter of insoluble hole transport materials and will be published elsewhere.  相似文献   

11.
Bulk heterojunction (BHJ) polymer solar cells (PSCs) sandwich a blend layer of conjugated polymer donor and fullerene derivative acceptor between a transparent ITO positive electrode and a low work function metal negative electrode. In comparison with traditional inorganic semiconductor solar cells, PSCs offer a simpler device structure, easier fabrication, lower cost, and lighter weight, and these structures can be fabricated into flexible devices. But currently the power conversion efficiency (PCE) of the PSCs is not sufficient for future commercialization. The polymer donors and fullerene derivative acceptors are the key photovoltaic materials that will need to be optimized for high-performance PSCs. In this Account, I discuss the basic requirements and scientific issues in the molecular design of high efficiency photovoltaic molecules. I also summarize recent progress in electronic energy level engineering and absorption spectral broadening of the donor and acceptor photovoltaic materials by my research group and others. For high-efficiency conjugated polymer donors, key requirements are a narrower energy bandgap (E(g)) and broad absorption, relatively lower-lying HOMO (the highest occupied molecular orbital) level, and higher hole mobility. There are three strategies to meet these requirements: D-A copolymerization for narrower E(g) and lower-lying HOMO, substitution with electron-withdrawing groups for lower-lying HOMO, and two-dimensional conjugation for broad absorption and higher hole mobility. Moreover, better main chain planarity and less side chain steric hindrance could strengthen π-π stacking and increase hole mobility. Furthermore, the molecular weight of the polymers also influences their photovoltaic performance. To produce high efficiency photovoltaic polymers, researchers should attempt to increase molecular weight while maintaining solubility. High-efficiency D-A copolymers have been obtained by using benzodithiophene (BDT), dithienosilole (DTS), or indacenodithiophene (IDT) donor unit and benzothiadiazole (BT), thienopyrrole-dione (TPD), or thiazolothiazole (TTz) acceptor units. The BDT unit with two thienyl conjugated side chains is a highly promising unit in constructing high-efficiency copolymer donor materials. The electron-withdrawing groups of ester, ketone, fluorine, or sulfonyl can effectively tune the HOMO energy levels downward. To improve the performance of fullerene derivative acceptors, researchers will need to strengthen absorption in the visible spectrum, upshift the LUMO (the lowest unoccupied molecular orbital) energy level, and increase the electron mobility. [6,6]-Phenyl-C(71)-butyric acid methyl ester (PC(70)BM) is superior to [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) because C(70) absorbs visible light more efficiently. Indene-C(60) bisadduct (ICBA) and Indene-C(70) bisadduct (IC(70)BA) show 0.17 and 0.19 eV higher LUMO energy levels, respectively, than PCBM, due to the electron-rich character of indene and the effect of bisadduct. ICBA and IC(70)BA are excellent acceptors for the P3HT-based PSCs.  相似文献   

12.
《Progress in Polymer Science》2013,38(12):1978-1989
Electronic properties of organic semiconductors are often critically dependent upon their ability to order from the molecular level to the macro-scale, as is true for many other materials attributes of macromolecular matter such as mechanical characteristics. Therefore, understanding of the molecular assembly process and the resulting solid-state short- and long-range order is critical to further advance the field of organic electronics. Here, we will discuss the structure development as a function of molecular weight in thin films of a model conjugated polymer, poly(3-hexylthiophene) (P3HT), when processed from solution and the melt. While focus is on the microstructural manipulation and characterization, we also treat the influence of molecular arrangement and order on electronic processes such as charge transport and show, based on classical polymer science arguments, how accounting for the structural complexity of polymers can provide a basis for establishing relevant processing/structure/property-interrelationships to explain some of their electronic features. Such relationships can assist with the design of new materials and definition of processing protocols that account for the molecular length, chain rigidity and propensity to order of a given system.  相似文献   

13.
Single functional molecules offer great potential for the development of novel nanoelectronic devices with capabilities beyond today's silicon-based devices. To realise single-molecule electronics, the development of a viable method for connecting functional molecules to each other using single conductive polymer chains is required. The method of initiating chain polymerisation using the tip of a scanning tunnelling microscope (STM) is very useful for fabricating single conductive polymer chains at designated positions and thereby wiring single molecules. In this feature article, developments in the controlled chain polymerisation of diacetylene compounds and the properties of polydiacetylene chains are summarised. Recent studies of "chemical soldering", a technique enabling the covalent connection of single polydiacetylene chains to single functional molecules, are also introduced. This represents a key step in advancing the development of single-molecule electronics.  相似文献   

14.
《Progress in Polymer Science》2013,38(12):1832-1908
Conjugated polymers have attracted an increasing amount of attention in recent years for various organic electronic devices because of their potential advantages over inorganic and small-molecule organic semiconductors. Chemists can design and synthesize a variety of conjugated polymers with different architectures and functional moieties to meet the requirements of these organic devices. This review concentrates on five conjugated polymer systems with 1D and 2D topological structures, and on one polymer designing approach. This includes (i) conjugated polyphenylenes (polyfluorenes, polycarbazoles, and various stepladder polymers), (ii) other polycyclic aromatic hydrocarbons (PAHs) as substructures of conjugated polymers, (iii) thiophene and fused thiophene containing conjugated polymers, (iv) conjugated macrocycles, (v) graphene nanoribbons, and finally (vi) a design approach, the alternating donor–acceptor (D–A) copolymers. By summarizing the performances of the different classes of conjugated polymers in devices such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), and polymer solar cells (PSCs), the correlation of polymer structure and device property, as well as the remaining challenges, will be highlighted for each class separately. Finally, we summarize the current progress for conjugated polymers and propose future research opportunities to improve their performance in this exciting research field.  相似文献   

15.
Three novel conjugated polymers have been designed and synthesized via the alternative copolymerization of the electron-donating monomer benzodithiophene (BDT) and three different electron-accepting monomers: perylene diimide (PDI), naphthalene diimide (NDI), and phthalimide (PhI). All obtained copolymers show good solubility in common organic solvents as well as broader absorptions in visible region and narrower optical band gaps compared to homopolymers from BDT units. It is found that the absorptions of the copolymers are red-shifted with increasing the electron-withdrawing ability of the co-monomer. In particular, the absorption edge of P(BDT-NDI) film extends to 760 nm, whereas that of P(BDT-PhI) film is only at 577 nm. Cyclic voltammograms of the three polymers disclose that P(BDT-PDI) and P(BDT-NDI) are typical n-type materials because PDI and NDI are strong electron-accepting groups, while P(BDT-PhI) is a stable p-type material where the weak electron-withdrawing monomer (PhI) is introduced. The results suggest that the absorption range and the electrochemical properties of the conjugated polymers can be tuned by appropriate molecule-tailoring, which will help exploring ideal conducting polymers for potential applications in polymer optoelectronics, especially in polymer solar cells.  相似文献   

16.
The thermal properties of mesomorphic polymers depend on the relative amounts of the different structural elements (hard core, flexible chains, main chain) of the polymer. Literature data are compared with the conclusions obtained from the three-component thermodynamic model of side chain mesomorphic polymers. The effects of the different soft elements (main chain, spacer and p-alkyl or alkoxy chain) depend first of all on the length of the spacer and its interaction with the main chain. The thermal properties of the polymer can be well regulated by varying the different structural elements of the homo- and co-polymers. The glass transition temperature (Tg) of the polymer can be reduced by building O and N atoms into the main chain and/or by binding the side chains on 3rd, 4th, etc. atoms of the main chain. The Tg can be further reduced by increasing the length of the spacer. If the spacers are long enough, the layer type structures are favored, with p-alkoxy chains behaving also as a plasticizer of the main chain. The clearing point can be influenced by copolymerization of monomers with different hard cores. The three-component thermodynamic model of side-chain mesomorphic polymers well explains the effect of different structural elements on the structure and properties of these polymers.  相似文献   

17.
BACKGROUND: Various poly(arylene ethynylene)s (PAEs) have been prepared and applied as molecular wires, in sensors, in nonlinear optics and as electroluminescent materials. But, to our knowledge, there has been no attention paid to the investigation of conjugated PAEs containing both triarylamine and quinoxaline groups. The influence imparted by the introduction of triarylamine and quinoxaline on the photophysical and electrochemical properties of PAEs is of interest. RESULTS: Two kinds of novel PAE derivatives, with electron‐donating triphenylamine groups in the backbone and electron‐accepting pendent quinoxaline moieties and bearing side chains of different lengths, were successfully synthesized with the Sonogashira coupling reaction. These polymers are soluble in common organic solvents and exhibit good film‐forming ability and thermal stability. UV‐visible investigations indicate that the ground states of these materials are unaffected by the polarity of their medium. An efficient intramolecular charge transfer effect is observed from an investigation of their photoluminescence properties in different solvents. Cyclic voltammetry study reveals that these polymers possess relatively high highest occupied molecular orbital levels due to the incorporation of triphenylamine segments into the polymer backbones. CONCLUSION: Primary characterization of these novel PAE derivatives shows that they might serve as potential active materials in optoelectronic devices. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
All-conjugated block copolymers of the rod-rod type came into the focus of interest because of their unique and attractive combination of nanostructure formation and electronic activity. Potential applications in a next generation of organic polymer materials for photovoltaic devices ("bulk heterojunction"-type solar cells) or (bio)sensors have been proposed. Combining the fascinating self-assembly properties of block copolymers with the active electronic and/or optical function of conjugated polymers in all-conjugated block copolymers is, therefore, a very challenging goal of synthetic polymer chemistry. First examples of such all-conjugated block copolymers from a couple of research groups all over the world demonstrate possible synthetic approaches and the rich application potential in electronic devices. A crucial point in such a development of novel polymer materials is a rational control over their nanostructure formation. All-conjugated di- or triblock copolymers may allow for an organization of the copolymer materials into large-area ordered arrays with a length scale of nanostructure formation of the order of the exciton diffusion length of organic semiconductors (typically ca. 10 nm). Especially for amphiphilic, all-conjugated copolymers the formation of well-defined supramolecular structures (vesicles) has been observed. However, intense further research is necessary toward tailor-made, all-conjugated block copolymers for specific applications. The search for optimized block copolymer materials should consider the electronic as well as the morphological (self-assembly) properties.  相似文献   

19.
We report synthesis and characterization of two D-A polymers (PSDT-C12 and PSDT-EH) with different side chains. Both polymers are based on alternate 12,13-dioctyl-indolo[2,3-a][1,2,5]thiadiazolo[3,4-c]carbazole (TDZIC) and dithienosilole derivative units in polymer main chain. We used TDZIC to enlarge the 2D conjugated plane of acceptor monomers by fusing benzothiadiazole (BT) unit with an indole unit having alkyl groups. PSDT-C12 exhibited 10 nm redshift compared to PSDT-EH in solid films, while their absorption spectra were almost identical in solutions. Since the backbone and side chains on the indolocarbazole group are the same, the redshift on PSDT-C12 could be resulted from the dodecyl (C12) side chain on the dithienosilole unit and different molecular weight between these two polymers. PSDT-C12 has a larger molecular weight than PSDT-EH. Therefore possibly both side chains and molecular weight contributed to the difference in the absorption spectra in solid films. The straight C-12 side chain has less steric hindrance than the branched EH side chain in solid films. PSDT-C12 has a longer main chain (larger molecule weight) than PSDT-EH, which can favour a more extended main chain interaction. The vibronic peak at 519 nm and shoulder at 563 nm in the PSDT-C12 film further confirmed stronger main chain interaction. Geometry optimization showed that head–tail (HT)-PSDT had a more twisting conjugated backbone with larger dihedral angle between dithienosilole unit and thiadiazole-fused ring compared to head–head/tail–tail (HH/TT)-PSDT.  相似文献   

20.
Three acceptor–acceptor conjugated copolymers ( TBT-DPP , FTBT-DPP , and HFTBT-DPP ) with different substituent groups have been synthesized with palladium-catalyzed Stille coupling condensation polymerization assisted with microwave. Polymer solar cells (PSCs) based on these copolymers as the electron donors and PC71BM as the acceptor have been fabricated. The synergistic effect of the substituent between two fluorine atoms and hexyl alkyl chains in bis(thien-2-yl)-2,1,3-benzothiadiazole fragment on their solar cell properties has been investigated. Both the fluorine atoms and the synergistic effect can improve the solubility of the polymers effectively while the excellent thermal stability properties are still retained. Two fluorine atoms (polymer FTBT-DPP ) increased the power conversion efficiency of the PSCs twice compared with TBT-DPP (without substituent). The synergistic effect (polymer HFTBT-DPP ) decreased that seriously to zero. Density function theory calculations showed that the conjugation level of the polymer backbone is one of key factors. It demonstrates that the synergistic effect of fluorine atoms and alkyl chains in the same fragment does not always work well in improving the PSCs performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号