首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
以某电器连接壳体为例,借助Moldflow软件对正交试验方案组合进行模拟,对正交试验模拟结果进行极差分析,得到各工艺参数对塑件翘曲变形量的影响程度为:保压时间>模具温度>注射时间>熔体温度>保压压力。极差分析得到的最优工艺参数组合对应的翘曲变形量与正交试验方案中最小翘曲变形量相比降低了6.7%。关键点采用遗传算法优化后的预测模型(GA-ELM)对塑件翘曲变形量进行预测。由于传统极限学习算法(ELM)的权值和阈值随机产生,网络系统预测稳定性及精度较差,故通过GA全局寻优能力寻找最佳的权值和阈值,得到GA-ELM。选择正交试验前80%样本作为训练集训练ELM与GA-ELM模型,通过样本后20%作为测试集验证ELM与GA-ELM模型预测精度。对比分析可看到:使用GA-ELM预测模型比直接使用ELM预测模型预测结果有更高预测精度及稳定性。此GA-ELM模型可用来预测该塑件翘曲变形量。对同类模具设计优化提供一定的思路及理论参考。  相似文献   

2.
针对某电器活动上盖翘曲变形及体积收缩问题,对相关注塑工艺参数进行正交实验设计,在Moldflow中模拟分析,并对翘曲变形量及体积收缩率进行信噪比优化处理。利用灰色关联分析法得到翘曲变形量和体积收缩率的灰色关联度,通过对灰色关联度进行极差分析得到各注塑工艺参数对塑件综合目标(翘曲变形量及体积收缩率同时较小)的影响程度为:保压时间>注塑时间>模具温度>熔体温度>保压压力>冷却时间,同时由灰色关联度极差分析结果得出最优工艺参数组合,在最优工艺参数组合下的翘曲变形量相对于正交实验水平下最小翘曲变形量降低了11.8%,体积收缩率相对于正交实验水平下最小体积收缩率降低了5.9%。最后采用粒子群优化算法(PSO)优化后的支持向量机(SVM)神经网络模型对该塑件翘曲变形量及体积收缩率进行预测,通过与不优化的SVM神经网络及BP神经网络预测模型相比发现,PSO–SVM神经网络模型预测精度及稳定性都优于SVM及BP神经网络,可以用于塑件翘曲变形量和体积收缩率的协同优化,解决塑件实际翘曲变形及体积收缩问题。  相似文献   

3.
利用CAE技术,选取模具温度、熔体温度、保压压力、保压时间等工艺参数作为研究对象,以塑件在不同方向的翘曲变形量为指标,利用正交试验建立L_(16)(4~5)正交试验表,优化最佳工艺参数组合,有效减少塑件的翘曲变形。通过方差分析,得出对塑件x、y、z方向翘曲变形影响最大因素分别为熔体温度、保压压力、保压压力;对塑件x、y、z方向翘曲变形影响最小因素分别为模具温度、保压时间、保压时间。  相似文献   

4.
针对某汽车音响面板在注射成型过程中易发生翘曲变形的现象,在该塑件工艺分析和翘曲变形预测理论分析的基础上,利用UG和Moldflow构建了该塑件的三维模型和分析模型,设计了以翘曲变形值最小为实验目标和以充填时间A、熔体温度B、模具温度C、保压压力D和保压时间E为因子的正交实验方案,并运用Moldflow进行了注射成型工艺模拟实验。通过对实验结果进行极差和方差分析得出,对塑件的翘曲变形量影响程度从大到小依次为DBACE,保压压力占比65.76%,最优工艺参数为充填时间1.4 s、熔体温度250℃、模具温度60℃、保压压力64 MPa、保压时间11 s,其翘曲变形值为0.549 7 mm,比用推荐工艺参数的翘曲变形值减少了24.84%。实践表明,采用该优化工艺生产的塑件,翘曲变形小,无熔接痕,质量优良,易于装配。  相似文献   

5.
以薄壁塑件为对象,研究了模具温度、熔体温度、保压时间及注射压力等工艺参数对该薄壁塑件成型翘曲的影响规律,并用正交实验法优化成型工艺方案,获得最小的翘曲塑件.结果表明,熔体温度和保压时间对塑件翘曲变形影响较为显著,模具温度对塑件翘曲基本没有显著的影响.  相似文献   

6.
薄壁件注塑翘曲变形综合优化分析   总被引:1,自引:0,他引:1  
以薄壁塑件为研究对象,将Moldflow模流分析工艺参数优化与ANSYS模具结构分析综合研究塑件翘曲变形,并进行工艺参数及冷却方式的优化。结果表明,保压压力是该薄壁塑件注塑时翘曲变形影响最显著的因素,模具温度对翘曲变形影响很小;通过优化可以得到最优的冷却管道布局和最优的注塑工艺参数;综合优化真实考虑到了由于模具变形而引起的塑件变形,并显著地减小了塑件翘曲变形。  相似文献   

7.
以家用空调遥控器前壳注塑件为例,在应用CAE模流分析确定塑件浇注系统和冷却系统的基础上,选取模具温度、熔体温度、注塑时间、保压时间和保压压力为设计变量,通过集成有限元模拟、Taguchi正交试验、BP神经网络(BPNN)以及粒子群优化算法(PSO)等来实现对薄壁塑件翘曲变形量的优化。优化后的工艺参数使得塑件翘曲变形量较优化前减少了37%,并应用Moldflow对优化工艺参数可靠性进行了模拟验证,结果显示,验证值和优化结果吻合度高,仅相差0.015 mm,表明所采用的薄壁塑件翘曲变形优化方法能显著减少注塑工艺参数调控过程对操作人员的经验依赖,具有较高的工程应用价值。  相似文献   

8.
《塑料科技》2017,(11):86-89
以薄壁塑件的翘曲变形为研究目标,运用Moldflow软件,结合软件中的Number of sub-variables实验设计方法,分析了两种不同分析序列对塑件翘曲变形的影响。结果表明:分析序列一中关键参数为保压时间,分析序列二中关键参数为保压时间和保压压力;分析序列二相比分析序列一的翘曲变形量降低了49.4%;综合两组分析序列推荐的工艺参数,可使其翘曲变形均有明显改善,分析序列二相比分析序列一降低了41.2%。分析序列二更适合翘曲变形分析,同时综合两种分析序列来优化工艺参数,能有效改善翘曲变形问题。  相似文献   

9.
基于正交法的汽车前罩板注塑工艺参数优化研究   总被引:5,自引:3,他引:2  
以汽车前罩板为研究对象,应用Moldflow有限元分析软件,针对工件质量缺陷或问题产生的原因,合理设计了模具的浇注系统和温度调节系统.以翘曲变形量作为质量指标,采用多因素正交法,获得了塑件在熔料温度、模具温度、保压压力、保压时间、注射时间五因素四水平下成型的翘曲变形量.采用方差分析比较了不同工艺参数对翘曲变形量的影响程度,得到了优化的工艺参数组合.  相似文献   

10.
散热器外壳是电子产品散热器的主要零件之一,由于壁薄,在注塑成型中经常出现壁厚不均、翘曲变形和熔接痕等缺陷。针对该问题,以熔体温度、模具温度、冷却时间、注射压力、注射时间、保压压力和保压时间7个工艺参数为输入量,注塑件的翘曲量作为输出量,建立RBF神经网络模型;利用均匀试验所得的数据作为样本对神经网络进行训练和测试,得到注塑工艺参数与塑件翘曲变形量之间的非线性映射关系。结合遗传算法对工艺参数进行优化,获得最佳的工艺参数为:熔体温度234. 4℃、模具温度31. 5℃、冷却时间23. 8 s、注射压力128. 3 MPa、注射时间4. 7 s、保压压力93. 0 MPa、保压时间14. 1 s,获得预测的最小翘曲变形值为0. 331 875 mm,并使用优化后的工艺参数进行试验。试验结果表明,优化后产品的最大翘曲变形量降低至0. 318 9 mm,与优化前均匀试验所得的0. 378 1 mm相比,得到了明显的改善,降低了15. 7%。  相似文献   

11.
《塑料》2018,(6)
选取聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯(ABS)共聚物作为填充材料,运用Moldflow软件对某温控器外壳注塑成型过程进行模流分析,得到PC和ABS的填充、翘曲变形分析结果,表明PC更适于生产温控器外壳。通过设计正交实验,探究了各工艺参数对翘曲量的影响。结合极差分析得出,影响塑件质量的顺序为:保压时间、熔体温度、保压压力、模具表面温度,并得到最优工艺参数,即模具表面温度为95℃,熔体温度为285℃,保压时间为11 s,保压压力为130 MPa。优化后,塑件的体积收缩率和最大翘曲量为2.311%,0.927 mm,分别降低了54.75%和40.69%,结果表明,优化后的工艺参数减小了翘曲量。  相似文献   

12.
为了降低翘曲变形对壁厚塑件质量的影响,利用注塑仿真对塑件进行模拟,并结合正交试验的直观分析和方差分析方法对注塑工艺参数进行优化。结果表明,当模具温度70℃、熔体温度220℃、保压压力为注射压力的120%、冷却时间15s、保压时间30s及注射时间4s时,塑件翘曲量最小,熔体温度对塑件翘曲影响最大,模具温度对翘曲影响最小。  相似文献   

13.
使用Moldflow软件模拟注塑成型过程,利用Taguchi法设计了L9(34)的正交试验,采用标准变量分析法(ANOVA)分析模具温度、熔体温度、保压压力和保压时间等工艺参数对制品翘曲变形的影响,预测了最佳注塑工艺参数,并对比了采用单点进浇与两点进浇条件下塑件的翘曲变形。结果表明:优化的工艺参数可以使塑件翘曲变形达到最小,采用两点进浇可以明显降低翘曲变形量。  相似文献   

14.
谷丽花  辛勇 《中国塑料》2014,28(12):104-108
以某复杂薄壁件为研究对象,建立其有限元模型,运用CAE对初始工艺下的塑件翘曲变形量进行分析,得到了该塑件的最大翘曲变形量。构建复杂薄壁件翘曲变形量优化数学模型,基于BP神经网络结合遗传算法对塑件数学模型进行优化求解,求解结果表明优化后的塑件最大翘曲变形量为0.2313mm,与初始工艺方案下塑件最大翘曲变形量0.2811mm相比,降低了21.53%,提高了塑件的成型质量,得到满足装配要求的塑件。进一步采用优化后得到的最优工艺参数进行实际生产验证,获得了满意的效果,证明了BP神经网络结合遗传算法优化工艺参数技术方法的可行性与可靠性。  相似文献   

15.
为减少CAE分析时间,提高寻优计算效率,提出基于Kriging代理模型并结合多目标粒子群算法(MOPSO算法)对塑件的注塑成型质量进行多目标优化。以塑件的翘曲变形量、缩痕指数为优化目标,以影响塑件成型质量的模具温度、熔体温度、保压时间、保压压力、注射时间、冷却时间等注塑工艺参数为试验影响因素,应用最优拉丁超立方试验设计方法结合模流分析(MFI分析)建立分析样本,基于Isight参数优化软件构建优化目标与影响因素之间的Kriging代理模型,基于MOPSO算法在代理模型内进行全局寻优,获得了一组使塑件翘曲变形量和缩痕指数最小的最优工艺参数组合并给出了优化目标的预测值。结果表明,Kriging代理模型的预测值与模拟试验结果基本吻合,优化后的翘曲变形量降低15. 3%、缩痕指数降低19. 7%,本文提出的方法能有效、快速实现注塑成型质量的多目标优化,为工程实践提供了有益的参考价值。  相似文献   

16.
《塑料》2019,(5)
注塑成型是一个具有多变量的复杂成型工艺过程,采用正交试验合理安排注塑工艺过程中进行多因素试验,通过分析各因素对试验结果的影响,确定工艺参数优化组合。对塑料接线盒的翘曲变形进行了优化控制研究。通过正交试验设计,从影响翘曲变形的6个工艺参数的角度分析了对塑件X、Y、Z 3个方向的翘曲变形量的影响,得到塑件翘曲变形最佳的注塑工艺参数组合:模具温度45℃、熔体温度190℃、保压时间35 s、保压压力120%、注射时间1. 5s、冷却时间13 s。通过试模,可知注塑出的塑件质量优良,符合客户要求。通过正交试验进行了塑件注塑质量优化控制,可针对不同试验指标,进行不同的试验因素分析,避免大量无序的试验成本,并且能够有效地解决了问题,可推广应用到其它塑件成型。  相似文献   

17.
以汽车内饰板为研究对象,设计合适的浇注系统,优化填充时间、模具温度、熔体温度、保压压力、保压时间、冷却时间等工艺参数,利用CAE技术和Taguchi正交试验法,通过模拟实验得出不同工艺参数组合下的翘曲变形量。通过均值分析、极差分析和方差分析研究各个工艺参数对翘曲变形量的影响,得到一组较为理想的工艺参数组合,使得翘曲变形量得到优化。  相似文献   

18.
以标签打印机的塑料把手为研究对象,分析了该塑件的注塑成型工艺。采用Pro/E三维软件建立了塑件模型,利用Moldflow软件确定最优浇口位置,并运用DOE面心立方试验对塑件注塑成型过程进行分析模拟,获得翘曲变形量的最显著影响因素;同时分析了翘曲变形量与熔体温度、注射时间、充填压力、保压时间等之间的耦合关系,获得了最优工艺参数,然后经开模、后续加工等工序得到合格的塑件产品。  相似文献   

19.
以汽车水室为例,将Taguchi试验设计与CAE模拟相结合,以翘曲变形量和顶出时的体积收缩率作为质量指标,分析模具温度、熔体温度、保压压力、保压时间和冷却时间对塑件质量的影响规律,通过均值分析找到各指标的优化工艺参数组合,并运用加权综合评分法,得出兼顾翘曲和收缩的最佳工艺参数组合。实际生产表明该方法能有效提高塑件产品质量。  相似文献   

20.
《塑料科技》2017,(9):74-78
为了解决无人机固定翼在注塑过程中工艺参数的优化选择问题,在考虑了熔体温度、模具温度、保压压力、保压时间、注射时间因素下,用模流分析软件Moldflow和正交试验相结合的方法对翘曲量、体积收缩率和缩痕指数进行了模拟分析,同时为了提高优化效率,根据正交试验数据建立了BP神经网络预测模型,并用模型对工艺参数进行了优化和实际生产验证。结果表明:优化后的塑件最大翘曲变形量、体积收缩率、缩痕指数分别优化了0.212 5 mm、1.26%、1.223%,提高了塑件质量。而且仿真值与模型的预测值基本吻合,相对误差在3%以内,验证了模型的可行性,为优化工艺参数方面的研究提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号