首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The ability to form low-moduli materials with sensitive modulus control over a wide range is advantageous for a variety of applications, including membranes and valves for microfluidic devices. This paper examines the impact of monomer functionality and stoichiometry on the network properties of thiol–vinyl systems from both experimental and theoretical perspectives. Agreement is observed between the model predictions, based on the probability of forming finite polymer network chains, and the measured Young's modulus values for polymer networks ranging in moduli from 1 to 10 MPa. The highest modulus is obtained for polymers containing tetrathiol, and lower-modulus polymers were obtained by copolymerizing monothiol or dithiol monomers. These novel elastomeric systems are also shown to have strain-at-break values of over 1000%. To illustrate one application of these low-modulus materials, the contact liquid photolithographic polymerization (CLiPP) method was used to fabricate thiol–ene valves in a polymeric microdevice. For an applied pressure of 5 psi, the maximum deflection of the valve was varied from 100 to 320 μm simply by tailoring the modulus of the thiol–ene membrane.  相似文献   

2.
A straightforward method for microfluidic devices fabrication using sunlight as the ultraviolet (UV) source is established in this work. This method is based on photolithography, but obviates the need for specialized UV exposure facility. Substrates coated with photoresist were placed directly under sun in a perpendicular direction to the sunlight for exposure. Exposure conditions were optimized for patterning features with different kinds of photoresist, photoresist of different thicknesses and dimensions. Exposure time can be adjusted to obtain designed features on a mask with good lateral structure according to the energy measured by UV meter (with a constant intensity of UV in sunlight). Masters produced under optimum exposure conditions were used for the fabrication of several microfluidic devices with different materials, structures, or functions. Resultant devices were shown eminently suitable for microfluidic applications such as electrophoretic separation, multiple gradient generator, and pneumatic valve-based cell culture. This photolithographic method is simple, low cost, easy to operate, and environmental friendly. Especially, the masters can be obtained in parallel simultaneously, which is suitable for chip fabrication for mass production. It is also more attractive for the laboratories, in which the support for photolithographic facility is not available.  相似文献   

3.
 We report on recent advances in micro fabrication technology using micromoulding and high-aspect ratio structuring of photopolymer. The direct application is the realization of components for millimeter-size, ultrasonic piezoelectric motors. A new fabrication process using a thick epoxy-based material (SU-8) and the electroplating of nickel is demonstrated. Photopolymer structures have also been realized and released using a positive tone resist as sacrificial layer. The main advantages over past fabrication methods are better design flexibility, simplicity of the fabrication process, the capability to combine metallic materials (Ni) with polymeric materials (SU-8), and the use of positive tone resist as a sacrificial layer. Received: 25 August 1997/Accepted: 23 October 1997  相似文献   

4.
Over the past decades, soft lithography has greatly facilitated the development of microfluidics due to its simplicity and cost-effectiveness. Besides, numerous fabrication techniques such as multi-layer photolithography, stereolithography and other methods have been developed to fabricate moulds with complex 3D structures nowadays. But these methods are usually not beneficial for microfluidic applications either because of low resolution or sophisticated fabrication procedures. Besides, high-resolution methods such as two-photon lithography, electron-beam lithography, and focused ion beam are often restricted by fabrication speed and total fabricated volume. Nonetheless, the region of interest in typical microfluidic devices is usually very small while the rest of the structure does not require complex 3D fabrication methods. Herein, conventional photolithography and two-photon polymerization are combined for the first time to form a simple hybrid approach in fabricating master moulds for soft lithography. It not only benefits from convenience of photolithography, but also gives rise to complex 3D structures with high resolution based on two-photon polymerization. In this paper, various tests have been conducted to further study its performance, and a passive micromixer has been created as a demonstration for microfluidic applications.  相似文献   

5.
In this paper, we report a novel approach to fabricate a low cost, large area and flexible mould and its applications in large area roller embossing. A liquid crystal polymer (LCP) film, which had a high glass transition temperature of 280°C, was clad with copper foils on both sides, was used as a starting material for mould fabrication. The LCP film and the copper foils were 50 and 36 μm thick, respectively. The LCP-Cu flexible mould was obtained through photolithographic patterning and wet etching of the copper foil on top surface of the LCP film. Using this proposed method, a polymer-metal hybrid flexible mould with an area of 150 mm × 150 mm was fabricated. The fabricated mould has a minimum feature size of 25 μm, and has been successfully used to demonstrate large area micro roller embossing. Micro channels, micro dots and micro mixers were embossed on polymeric as well as ceramic green substrates.  相似文献   

6.
In this paper we consider the optimization of general 3D truss structures. The design variables are the cross-sections of the truss bars together with the joint coordinates, and are considered to be continuous variables. Using these design variables we simultaneously carry out size optimization (areas) and shape optimization (joint positions). Topology optimization (removal and introduction of bars) is only considered in the sense that bars of minimum cross-sectional area will have a negligible influence on the performance of the structure. The structures are subjected to multiple load cases and the objective of the optimizations is minimum mass with constraints on (possibly multiple) eigenfrequencies, displacements, and stresses. For the case of stress constraints, we deal differently with tensile and compressive stresses, for which we control buckling on the element level. The stress constraints are imposed in correlation with industrial standards, to make the optimized designs valuable from a practical point of view. The optimization problem is solved using SLP (Sequential Linear Programming).  相似文献   

7.
There has recently been a great demand for the artificial teeth prostheses that are made of materials sintered at 1500 °C, such as zirconia ceramic. It is, however, very difficult for dental technicians to manually fabricate the prostheses with such materials since their degree of strength is very high. For that reason, the prostheses of strong materials have been fabricated by using computer numerical control (CNC) machines. In the CNC fabrication, the most important subject is how accurately the prostheses can be modeled in three-dimensional (3D) space according to dentists' requirements. In this paper, we propose effective methods for modeling single cores such as single caps and Conus cores, which are the principal ones of the artificial teeth prostheses. Our approach employs the two-dimensional Minkowski sum, a developed ZMap algorithm, and other geometric techniques such as the tiling of contours. We also present and analyze the 3D visual examples of the single cores modeled by the proposed methods.  相似文献   

8.
Microfluidic applications demand accurate control and measurement of small fluid flows and volumes, and the majority of approaches found in the literature involve materials and fabrication methods not suitable for a monolithic integration of different microcomponents needed to make a complex Lab-on-a-Chip (LoC) system. The present work leads to a design and manufacturing approach for problem-free monolithic integration of components on thermoplastics, allowing the production of excellent quality devices either as stand-alone components or combined in a complex structures. In particular, a polymeric liquid flow controlling system (LFCS) at microscale is presented, which is composed of a pneumatic microvalve and an on-chip microflow sensor. It enables flow regulation between 30 and 230 μl/min with excellent reproducibility and accuracy (error lower than 5%). The device is made of a single Cyclic Olefin Polymer (COP) piece, where the channels and cavities are hot-embossed, sealed with a single COP membrane by solvent bonding and metalized, after sealing, to render a fully functional microfluidic control system that features on-chip flow sensing. In contrast with commercially available flow control systems, the device can be used for high-quality flow modulation in disposable LoC devices, since the microfluidic chip is low cost and replaceable from the external electronic and pneumatic actuators box. Functionality of the LFCS is tested by connecting it to a microfluidic droplet generator, rendering highly stable flow rates and allowing generation of monodisperse droplets over a wide range of flow rates. The results indicate the successful performance of the LFCS with significant improvements over existing LFCS devices, facing the possibility of using the system for biological applications such as generating distinct perfusion modes in cell culture, novel digital microfluidics. Moreover, the integration capabilities and the reproducible fabrication method enable straightforward transition from prototype to product in a way that is lean, cost-effective and with reduced risk.  相似文献   

9.
Hollow microstructures serve many useful applications in the fields of microsystems, chemistry, photonics, biology and others. Current fabrication methods of artificial hollow microstructures require multiple fabrication steps and expensive manufacturing tools. The paper reports a unique one-step fabrication process for the growth of hollow polymeric microstructures based on electric field-assisted capillary action. This method demonstrates the manufacturing of self-encapsulated microstructures such as hollow microchannels and microcapsules of around 100-??m height from an initial polymer thickness of 22???m. Microstructure caps of several microns thickness have been shown to keep their shape under bending or delamination from the substrate. The inner surface of hollow microstructures is shown to be smooth, which is difficult to achieve with current methods. More complicated structures, such as a microcapsule array connected with hollow microchannels, have also been manufactured with this method. Numerical simulation of the resist growth process using COMSOL Multiphysics finite element analysis software has resulted in good agreement between simulated and experimental results on the overall shape of the resulting structures. These results are very positive and demonstrate the speed, versatility and cost-effectiveness of the method.  相似文献   

10.
This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process methodology was demonstrated fabricating out-of-plane polymeric hollow microneedles. First, the fabrication of needle tips was demonstrated for polymeric microneedles with an outer diameter of 250 mum, through-hole capillaries of 75-mum diameter and a needle shaft length of 430 mum by lithographic processing of SU-8 onto simple v-grooves. Second, the technique was extended to gain more freedom in tip shape design, needle shaft length and use of filling materials. A novel combination of silicon dry and wet etching is introduced that allows highly accurate and repetitive lithographic molding of a complex shape. Both techniques consent to the lithographic integration of microfluidic back plates forming a patch-type device. These microneedle-integrated patches offer a feasible solution for medical applications that demand an easy to use point-of-care sample collector, for example, in blood diagnostics for lithium therapy. Although microchip capillary electrophoresis glass devices were addressed earlier, here, we show for the first time the complete diagnostic method based on microneedles made from SU-8.  相似文献   

11.
3D microfluidic device fabrication methods are normally quite expensive and tedious. In this paper, we present an easy and cheap alternative wherein thin cyclic olefin polymer (COP) sheets and pressure sensitive adhesive (PSA) were used to fabricate hybrid 3D microfluidic structures, by the Origami technique, which enables the fabrication of microfluidic devices without the need of any alignment tool. The COP and PSA layers were both cut simultaneously using a portable, low-cost plotter allowing for rapid prototyping of a large variety of designs in a single production step. The devices were then manually assembled using the Origami technique by simply combining COP and PSA layers and mild pressure. This fast fabrication method was applied, as proof of concept, to the generation of a micromixer with a 3D-stepped serpentine design made of ten layers in less than 8 min. Moreover, the micromixer was characterized as a function of its pressure failure, achieving pressures of up to 1000 mbar. This fabrication method is readily accessible across a large range of potential end users, such as educational agencies (schools, universities), low-income/developing world research and industry or any laboratory without access to clean room facilities, enabling the fabrication of robust, reproducible microfluidic devices.  相似文献   

12.
Microfluidic technologies are gaining increasing importance due to their capability of manipulating fluids at the microscale that should allow to synthesize many products with surprisingly high yields and short reaction times. In the lab-on-chip field researchers have developed microfluidic apparatuses to provide special equipments for producing positron emission tomography (PET) radiopharmaceuticals in a quicker, safer, and more reliable way compared to traditional vessel-based approaches. In this paper, we have selected a number of polymeric materials, such as polydimethylsiloxane (PDMS), SU-8, and Teflon-like coatings deposited on PDMS or hard substrates, to be used for the fabrication of micro apparatuses for radiosynthesis. Their radioactivity resistance was investigated employing different setups and the results analyzed by atomic force microscopy (AFM), optical microscopy, and Fourier transform infrared spectroscopy (FT-IR). To evaluate undesired absorption effects in the investigated materials, the fluoride radioactive trapping inside microchannel was measured through autoradiography. We found out that polymeric materials such as SU-8 and Teflon coated on hard materials seem very appealing for fabricating microreactors for radiochemistry.  相似文献   

13.
Micromachined dissolved oxygen sensor based on solid polymer electrolyte   总被引:2,自引:0,他引:2  
A silicon microprobe to measure dissolved oxygen levels is described. The sensors are prepared by overlaying platinum thin film electrodes with a solid state proton conductive matrix (PCM) coating. The platinum thin film electrodes are fabricated on silicon substrates by standard photolithographic techniques while the PCM coating is achieved by drop-casting methods. The size and materials of the device make it potentially suitable for medical implantation. The devices are tested in deionized water (DI water), phosphate buffered saline (PBS), and bovine blood serum (BBS). Through linear sweep voltammetry (LSV), single devices are shown to have decent performances in terms of long term stability, reliability, hysteresis, linearity, and sensitivity. Variations among different devices are characterized and correlated. The simplicity and cost effectiveness of the fabrication and packaging procedures and the decent in vitro performances of these devices make them good candidates as miniaturized, disposable, and implantable dissolved oxygen sensors for biological and biomedical use.  相似文献   

14.
Recently many microfluidic systems are increasingly equipped with functional units for ionic controls for various applications. In this review article, we define an ion bridge as a structure that controls current or distribution of ions in a microfluidic system, and summarize the ion bridges in the literature in terms of characteristics, fabrication methods, advantages and disadvantages. The ion bridges play two basic roles, namely to ensure electrical contact in a microfluidic network and mechanically separate a liquid phase from another. More interestingly, the charged surfaces of ion bridges, which can be chemically modified, create new characteristics such as permselectivity and concentration polarization. Asymmetric ion transport as well as ionic conductivity through the ion bridges suggests a variety of applications including sample preconcentration, electroosmotic pump, electrospray ionization, electrically driven valve and many others. This review categorizes the ion bridges into several classes and describes the structures, materials, fundamental functions and applications. In Perspectives, new opportunities of microfluidics and nanofluidics provided by the ion bridges are discussed.  相似文献   

15.
In order to effectively pump liquid in a fluidic chip, the PDMS or SU8 channels were frequently modified by surface treatments to obtain the hydrophilic surface but encountered the problem of the hydrophobic recovery. In this article, long-term highly hydrophilic fluidic chips were demonstrated using rapid fabrication of low-power CO2 laser ablation and low-temperature glass bonding with an interlayer of liquid crystal polymer (LCP). The intrinsic hydrophilic materials of glass and LCP were beneficial for self-driven flow in the long-term fluidic chip by surface-tension force with no extra fluidic pumps. The higher viscosity fluid could increase the difficulty of self-driven capability. The stability of contact angle and flow test of the chip after 2 months is similar to that at beginning. The high-viscosity human whole blood was successfully driven at an average moving velocity of about 1.89 mm/s for the beginning and at 2.04 mm/s after 2 months. Our fluidic chip simplifies the traditional complex fabrication procedure of glass chips and conquers the problem of traditional hydrophobic recovery.  相似文献   

16.
This paper describes two methods for controlling capillary-driven liquid flow on microfluidic channels. Unlike flow driven by external forces, capillary-driven flow is dominated by interfacial phenomena and, therefore, is sensitive to the channel geometry and chemical composition (surface energy) along the channel. The first method to control fluid flow is based on altering surface energy along the channel through regulation of UV irradiation time, which enables adjusting the contact angle along the fluid path. The slowing down (delay) of the liquid flow depends on the stripe length and its position in the channel. Using this technique, we generated flow delays spanning from a second to over 3 min. In the second approach, we manipulated the flow velocity by introducing contractions and expansions in the channel. The methods used herein are inexpensive and can be incorporated to the microfluidic channel fabrication step. They are capable of controlling liquid flow with precise time delays without introducing the foreign matter in the fluidic device.  相似文献   

17.
Digital fabrication devices exploit basic technologies in order to create tangible reproductions of 3D digital models. Although current 3D printing pipelines still suffer from several restrictions, accuracy in reproduction has reached an excellent level. The manufacturing industry has been the main domain of 3D printing applications over the last decade. Digital fabrication techniques have also been demonstrated to be effective in many other contexts, including the consumer domain. The Cultural Heritage is one of the new application contexts and is an ideal domain to test the flexibility and quality of this new technology. This survey overviews the various fabrication technologies, discussing their strengths, limitations and costs. Various successful uses of 3D printing in the Cultural Heritage are analysed, which should also be useful for other application contexts. We review works that have attempted to extend fabrication technologies in order to deal with the specific issues in the use of digital fabrication in the Cultural Heritage. Finally, we also propose areas for future research.  相似文献   

18.
We report a simple, low-cost and novel method for constructing three-dimensional (3D) microelectrodes in microfluidic system by utilizing low melting point metal alloy. Three-dimensional electrodes have unique properties in application of cell lysis, electro-osmosis, electroporation and dielectrophoresis. The fabrication process involves conventional photolithography and sputtering techniques to fabricate planar electrodes, positioning bismuth (Bi) alloy microspheres at the sidewall of PDMS channel, plasma bonding and low temperature annealing to improve electrical connection between metal microspheres and planar electrodes. Compared to other fabrication methods for 3D electrodes, the presented one does not require rigorous experimental conditions, cumbersome processes and expensive equipments. Numerical analysis on electric field distribution with different electrode configurations was presented to verify the unique field distribution of arc-shaped electrodes. The application of 3D electrode configuration with high-conductive alloy microspheres was confirmed by particle manipulation based on dielectrophoresis. The proposed technique offers alternatives to construct 3D electrodes from 2D electrodes. More importantly, the simplicity of the fabrication process provides easy ways to fabricate electrodes fast with arc-shaped geometry at the sidewall of microchannel.  相似文献   

19.
Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum-based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered, including cell designs, fabrication techniques, unique technical features for vacuum compatible cells (e.g., detection windows, device materials), and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.  相似文献   

20.
This paper discusses a parallel collision detection algorithm. Implemented using software executed on ubiquitous Graphics Processing Unit (GPU) cards, the algorithm demonstrates two orders of magnitude speedup over a state-of-the art sequential implementation when handling multimillion object collision detection tasks. GPUs are composed of many (on the order of hundreds) scalar processors that can simultaneously execute an operation; this strength is leveraged in the proposed algorithm, which combines the use of multiple CPU cores with multiple GPUs. The software implementation of the algorithm can be used to detect collisions between five million objects in less than two seconds and was used to detect 1.4 billion contact events in less than 40 seconds. A spherical padding approach is used to represent surface geometries as large collections of spheres when dealing with collision detection between bodies with complex geometries. The proposed methodology is expected to be relevant in computational mechanics with applications in granular flow dynamics and smoothed particle hydrodynamics (SPH), where the number of contact events ranges from millions to billions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号