首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient liquid-phase (TLP) sintering of CaF2 additive on the densification behaviors and microstructural development of AlN ceramics are investigated. It is found that 1 wt% CaF2 can effectively promote densification process. Increasing content of CaF2 results in finer grain size and slower densification during intermediate sintering stage. XRD results show that grain-boundary phase of CaAl4O7 is formed at 1150 °C from reactions of AlN–CaF2–Al2O3. With further temperature increasing, the grain-boundary phases of CA2 and CaAl12O18, which were formed from the reaction between CaF2 and oxide layers, experienced transformations firstly into CaAl4O7 above 1600 °C and into CaAl2O4 at higher temperature. SEM and TEM results show that formed grain-boundary phases can evaporate from sintering bodies during further soaking, leaving clean grain boundaries. The efficiency of TLP sintering mechanism is further manifested by the preparation of transparent AlN ceramics with good combination properties.  相似文献   

2.
The change of specific surface area and pore size distribution coupled with N2 adsorption–desorption hysteresis isotherm, in particular that typical to cylindrical pores, were used to determine the onset coarsening/coalescence in the temperature range of 500–800 °C for Co(OH)2 derived Co3O4 nanoplates and 700–1000 °C for CoO-derived Co3O4 powders (backtransformed to CoO above 900 °C) which are equi-axed in shape and microns in size. The vigorous onset coarsening/coalescence of the nanoplates and equi-axed micron particles was found to occur within minutes having apparent activation energy of 37 ± 7 kJ/mol (based on t0.7, i.e. time for 70% surface area reduction) and 113 ± 8 kJ/mol (based on t0.3), respectively. The surface area reduction process of the nanoplates was found to be controlled by (1 1 1)-specific coalescence besides a coarsening–repacking process more common to the equi-axed particles. The present static experimental results of coarsening–coalescence of the Co3O4 (below 900 °C) or CoO particles (above 900 °C) supports our previous supposition that CoO and Co3O4 nanocondensates could readily assemble as nanochain aggregates and further coalesce into a close packed manner below 1000 °C by the radiant heating effect in a dynamic laser ablation process.  相似文献   

3.
Thermal properties of La2O3-doped ZrB2- and HfB2-based ultra high temperature ceramics (UHTCs) have been measured at temperatures from room temperature to 2000 °C and compared with SiC-doped ZrB2- and HfB2-based UHTCs and monolithic ZrB2 and HfB2. Thermal conductivities of La2O3-doped UHTCs remain constant around 55–60 W/mK from 1500 °C to 1900 °C while SiC-doped UHTCs showed a trend to decreasing values over this range.  相似文献   

4.
Gd2Zr2O7 ceramic was prepared by solid state reaction at 1650 °C for 10 h in air, and exhibited a defect fluorite-type structure. Reaction between molten V2O5 and Gd2Zr2O7 ceramic was investigated at temperatures ranging from 700 to 850 °C using an X-ray diffractometer (XRD) and scanning electron microscopy (SEM). Molten V2O5 reacted with Gd2Zr2O7 to form ZrV2O7 and GdVO4 at 700 °C; however, in a temperature range of 750–850 °C, molten V2O5 reacted with Gd2Zr2O7 to form GdVO4 and m-ZrO2. Two different reactions observed at 700 °C and 750–850 °C could be explained based on the thermal instability of ZrV2O7.  相似文献   

5.
Transparent lutetium titanate (Lu2Ti2O7) bodies were fabricated by spark plasma sintering using Lu2O3 and TiO2 powders calcined from 700 °C to 1200 °C. No solid-state reaction was identified after calcination at 700 °C, whereas single-phase Lu2Ti2O7 powder was prepared at 1100 and 1200 °C. The calcination at 700 °C promoted densification at the early stages of sintering, whereas residual pores at grain boundaries resulted in Lu2Ti2O7 bodies with low transparency. Low-density and opaque Lu2Ti2O7 bodies formed owing to the coarsening of the powder calcined at 1200 °C. The Lu2Ti2O7 body sintered using the powder calcined at the moderate temperature of 1100 °C had a density of 99.5% with the highest transmittances of 41% and 74% at wavelengths of 550 nm and 2000 nm, respectively.  相似文献   

6.
Hot modulus of rupture of Al2O3-spinel castables containing 5–15 wt% alumina-rich magnesia alumina spinel and 1·7 wt% CaO generally increases with increase in spinel content and temperature from 1000 to 1500°C. The magnitudes of hot modulus of rupture of castables containing 15 wt% spinel and 1·7 wt% CaO are 14·3 MPa at 1400°C and 15·6 MPa at 1500°C, while those of castables containing 20 wt% spinel and 1·7 wt% CaO are 12·5 MPa at 1400°C and 14·7 MPa at 1500°C. The former castables contained 15 wt% spinel of −75 μm size, while the latter contained 10 wt% spinel of +75 μm size and another 10 wt% spinel of −75 μm size. The bond linkage between the CA6 and spinel grains in the matrix is believed to cause both the spinel content and temperature dependence of hot strength of Al2O3-spinel castables, as well as fine grain spinel even in amount less than coarser grain spinel to be more effective for enhancing hot strength. The trend of the magnitude of thermal expansion under load (0·2 MPa) above 1500°C of the castables is not necessarily indicative of the magnitude of hot modulus of rupture at 1400 or 1500°C. ©  相似文献   

7.
Porous aggregations, with about 10 μm diameter, composed of Al2O3 platelet crystals were formed by heating a powder mixture consisting of Al2(SO4)3+2K2SO4 (mol ratio) in an alumina crucible at temperatures 1000–1300°C for 3 h and removing the flux component with hot hydrochloric acid after heating. The specific surface area of the aggregations obtained by heating at 1000°C for 3 h was maximum and its value was 5·2 m2 g−1. Since the size of Al2O3 platelets increased and the number of Al2O3 platelets decreased, the specific surface area decreased to 0·7 m2 g−1 at 1100°C. When heated at 1300°C, the size of the Al2O3 platelets increased with increasing amount of K2SO4 in the starting powder mixture. ©  相似文献   

8.
Ceramic glaze containing Li2O and ZnO was prepared at a low firing temperature of 1100 °C. Addition of 0–30 wt.% iron oxide content developed brown color with a metallic sparkling effect from crystallization after soaking at 980–1080 °C. Using XRD, SEM/EDS and Raman microscopy the crystalline phases were determined as lithium zinc ferrite (LixZn1?2xFe2+xO4 where x = 0.05–0.20), hematite (α-Fe2O3) and anorthite (CaAl2Si2O8). The most preferable metallic sparkling effect was caused by the lithium zinc ferrite phase obtained from the glaze containing 10 wt.% of iron oxide. Thermal analysis by STA after heat treatment indicated that crystallization temperature of lithium zinc ferrite and the effective soaking temperature depended on the iron oxide content in the glaze. The influence of excessive iron oxide content on the crystallization behavior of lithium zinc ferrite, anorthite and hematite phases is discussed.  相似文献   

9.
The objective of this work was to examine linear thermal expansion of virgin and poled 0.57Pb(Sc1/2Nb1/2)O3–0.43PbTiO3 ceramics between 30 °C and 600 °C by contact dilatometry. The thermal expansion dL/Lo of the virgin ceramic increases with increasing temperature until approximately 260 °C. The physical and technical thermal expansion coefficients were determined. At 260 °C the physical thermal coefficient is 2.08 × 10?6 K?1. Between 260.0 °C and 280.0 °C an anomaly in the thermal expansion vs. temperature and an endothermic peak in the differential scanning calorimetry curves correspond to the phase transition region from tetragonal to cubic phase. At temperatures from 280 °C to 600 °C the thermal expansion dL/Lo increases again.In the derivative of the dL/Lo heating curves of the poled ceramics, additionally to the anomaly at 270 °C, also the anomaly at 160 °C is observed, which is associated with the depolarization of the material during heating.  相似文献   

10.
《Ceramics International》2017,43(16):13461-13468
Alumina powders were prepared via a novel nonaqueous precipitation method with aluminum powders as aluminum source and anhydrous acetic acid as precipitant. The thermal decomposition and phase transformation of crystal precipitate and the influence of precipitate aging were investigated via TG-DTA-MS, XRD, TEM, BET, FE-SEM and performance tests of sintered bodies. The results show crystal precipitate C4H7AlO7 transforms to amorphous Al2O3 at 300 °C, and then to γ-Al2O3 at 950 °C, and finally to α-Al2O3 at 1050 °C. The particle size of α-Al2O3 prepared at 1100 °C is 50–100 nm with BET surface area of 25.98 m2∙g−1. FE-SEM morphology of sintered sample at 1400 °C shows excellent sinterability of the α-Al2O3 powders. Aging eliminates aggregation, and leads to highly homogenized and densified particles. It also affects the densification behaviour during sintering and further influences density, thermal expansion coefficient, flexural strength, volume resistivity and electric breakdown strength of sintered bodies  相似文献   

11.
Magnesium aluminate spinel oxides have been prepared via poly(N-isopropylacrylamide) assisted microwave technique. The prepared MgAl2O4 powders showed a crystalline cubic structure with spinel phase after calcination at 600 °C only. The poly(N-isopropylacrylamide) amount showed a high effect on the crystallite size and the densification behavior of MgAl2O4. The increase of the amount of poly(N-isopropylacrylamide) reduced the sintering temperature of MgAl2O4 from 1400 °C to 1050 °C. The hot-pressed of MgAl2O4 powders in the presence of 3 wt% of poly(N-isopropylacrylamide) exhibited a full density at sintering temperature 1100 °C in 15 min only. The sintered films showed high transparency (81 ± 2%) in the wavelength range 500–1000 nm.  相似文献   

12.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

13.
《Ceramics International》2016,42(11):12981-12987
The effect of SrSO4 content on the tribological properties of NiCr–30wt%ZrO2(Y2O3) (NC30Z) cermet was evaluated over a wide temperature range from room temperature to 1000 °C. The results indicated that the inclusion of SrSO4 effectively improved the friction coefficients and wear rates of NC30Z cermet above 400 °C. NC30Z–5SrSO4 composite against alumina ball exhibited satisfactory tribological performance, which was attributed to synergistic lubrication of pseudocubic-SrZrO3 and NiCr2O4 between 400 °C and 800 °C and cubic-SrZrO3, NiCr2O4, NiO and Cr2O3 at 1000 °C.  相似文献   

14.
V2O5 reaction and melt infiltration in plasma-sprayed 7 wt% Y2O3–ZrO2 (YSZ) coatings were investigated at temperatures ranging from 750 °C to 1200 °C using SEM and TEM combined with EDS. The interlamellar pores and intralamellar cracks, common in plasma-sprayed materials, provide pathway for the molten species. The microstructure of the contaminated coatings is therefore the result of the interplay between the dissolution/reaction rates of the V2O5 with YSZ coating and the infiltration rates of the molten species. Near the coating surface, the reaction front proceeds in a planar fashion, via dissolution of the lamella and precipitation of fine-grained reaction products composed of ZrV2O7 (for reactions at 750 °C and below), m-ZrO2 and YVO4. The thickness of this planar reaction zone or PRZ was found to increase as reaction time and temperature increased. The melted V2O5 was observed to infiltrate along the characteristic microstructure of plasma-sprayed coatings, i.e. the interconnected pores and cracks, and react with the YSZ. The thickness of this melt infiltrated reaction zone or MIRZ ranged from 5 μm for reactions at 750 °C for 30 min to 130 μm for reactions at 1000 °C for 90 min. At 1200 °C, only a PRZ was observed (i.e. the thickness of the MIRZ was nominally zero), suggesting that the dissolution reaction within the pores/cracks and subsequent formation of reaction products may limit infiltration. Fifty-hour heat-treatments at 1000 °C and 1200 °C prior to reaction with the V2O5 at 800 °C for 90 min were used to change the microstructural features of the coating, such as crack connectivity and pore size. The heat-treatment at 1000 °C was found most deleterious to the coating due to large cracks created via a desintering process that afforded deep penetration of the molten V2O5.  相似文献   

15.
The removal of carbon residue from ZnAl2O4 nanopowders by annealing at 500–800 °C leads to a decrease of specific surface area from 228.1 m2/g to 47.6 m2/g. At the same time, the average crystallite size increased from 5.1 nm to 14.9 nm. In order to overcome these drawbacks, a new solution for removing the carbon residue has been suggested: chemical oxidation using hydrogen peroxide. In terms of carbon removal, a H2O2 treatment for 8 h at 107 °C proved to be equivalent to a heat treatment of 1 h at 600 °C. The benefits of chemical oxidation over thermal oxidation were obvious. The specific surface area was much larger (188.1 m2/g) in the case of the powder treated with H2O2. The average crystallite size (5.8 nm) of ZnAl2O4 powder treated with H2O2 was smaller than the crystallite size (8.2 nm) of the ZnAl2O4 powder annealed at 600 °C.  相似文献   

16.
Calcium-magnesium-alumina-silicate (CMAS) attack has been considered as a significant failure mechanism for thermal barrier coatings (TBCs). As a promising series of TBC candidates, rare-earth phosphates have attracted increasing attention. This work evaluated the resistance characteristics of LnPO4 (Ln = Nd, Sm, Gd) compounds to CMAS attack at 1250 °C. Due to the chemical reaction between molten CMAS and LnPO4, a dense, crack-free reaction layer, mainly composed of Ca3Ln7(PO4)(SiO4)5O2 apatite, CaAl2Si2O8 and MgAl2O4, was formed on the surface of compounds, which had positive effect on suppressing CMAS infiltration. The depth of CMAS penetration in LnPO4 (Ln = Nd, Sm, Gd) decreased in the sequence of NdPO4, SmPO4 and GdPO4. GdPO4 had the best resistance characteristics to CMAS attack among the three compounds. The related mechanism was discussed based on the formation ability of apatite phase caused by the reaction between molten CMAS and LnPO4.  相似文献   

17.
《Ceramics International》2017,43(7):5674-5679
Non-rare-earth, red-emitting CaAl12O19:Mn4+ nanofiber phosphors have been successfully prepared by an electrospinning technique followed by an annealing process. The as-prepared precursor fibers have smooth surfaces with an average diameter of 5 µm. After annealing at high temperature, the diameter of the fibers gradually reduces due to the decomposition of the organic polymers. The photoluminescence and crystalline properties of the fibers were investigated as a function of Mn4+ concentration and the annealing temperature. Under ultraviolet and blue light excitation, CaAl12O19:Mn4+ exhibits a characteristic red emission at 655 nm with three satellite peaks due to the 2E→4A2 transition of Mn4+. The highest PL intensity is achieved at a 0.5% Mn4+ concentration and a firing temperature of 1400 °C. In comparison to CaAl12O19:Mn4+ prepared by a usual solid-state reaction, the luminescence of the as-prepared nanofiber phosphors in the present work has been strongly enhanced by optimizing the morphology and improving the crystallinity and phase purity. The absorption band in the blue region and a bright emission in the red region make the CaAl12O19:Mn4+ nanofiber phosphor a candidate for achieving high color rendering in YAG:Ce-based WLEDs. A warm WLED with a high CRI of 88.5 at a CCT of 4553 K has been successfully achieved by coating YAG:Ce with CaAl12O19:Mn4+ nanofiber phosphors on blue InGaN chips.  相似文献   

18.
Gadolinium zirconate (Gd2Zr2O7) prepared by solid state reaction exhibited a defect fluorite-type structure. Reactions between Gd2Zr2O7 ceramic and vanadium pentoxide (V2O5), sodium sulfate (Na2SO4), and V2O5 + Na2SO4 mixture were investigated from 700 to 1000 °C in air using an X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). V2O5 reacts with Gd2Zr2O7 to form gadolinium vanadate (GdVO4) and monoclinic zirconia (m-ZrO2) at 900 and 1000 °C in air. However, no chemical reaction product between Na2SO4 and Gd2Zr2O7 is found at 900 and 1000 °C in air. V2O5 reacts with equal molar Na2SO4 to form sodium vanadate (NaVO3) at 610 °C. In the temperature range of 700–1000 °C, Na2SO4 + V2O5 mixture reacts with Gd2Zr2O7 in air to form the final reaction products of GdVO4 and m-ZrO2.  相似文献   

19.
LiNi1?yCoyO2 (y=0.1, 0.3, and 0.5) were synthesized by a solid-state reaction method at 800 °C and 850 °C using Li2CO3, NiO, and Co3O4 as the starting materials. The electrochemical properties of the synthesized LiNi1?yCoyO2 were then investigated. For samples with the same composition, the particles synthesized at 850 °C were larger than those synthesized at 800 °C. The particles of all the samples synthesized at 850 °C were larger than those synthesized at 800 °C. LiNi0.5Co0.5O2 synthesized at 850 °C had the largest first discharge capacity (159 mA h/g), followed in order by LiNi0.7Co0.3O2 synthesized at 800 °C (158 mA h/g) and LiNi0.9Co0.1O2 synthesized at 850 °C (151 mA h/g). LiNi0.9Co0.1O2 synthesized at 850 °C had the best cycling performance with discharge capacities of 151 mA h/g at n=1 and 156 mA h/g at n=5.  相似文献   

20.
The stability of the La3.5Ru4O13 and La2RuO5 compounds in the La–Ru–O system in various atmospheres and various temperature ranges was investigated by thermal analysis, X-ray diffraction analysis and electron microscopy. The La3.5Ru4O13 compound is stable in oxidizing and neutral atmospheres (N2 with 10 ppm O2), while La2RuO5 is partially reduced in a neutral atmosphere to form La2RuO4.6. In a reducing atmosphere both compounds decompose into metallic Ru and La2O3. The thermal expansion coefficients of La2RuO5 and La3.5Ru4O13 at 800 °C are 11.2 × 10−6 K−1 and 9.3 × 10−6 K−1, respectively. The specific electrical resistivity for La3.5Ru4O13 is relatively independent of temperature and is 2 × 10−2 Ω cm at 800 °C, while for La2RuO5 it decreases with increasing temperature and is 1 Ω cm at 800 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号