首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
We report on low-resistance and thermally stable Pd/Ru ohmic contacts to surface-treated p-GaN (3 × 1017 cm−3). It is shown that annealing at 500°C for 2 min in a N2 ambient improves ohmic contact properties. Specific contact resistance is measured to be 9.2(±0.2) × 10−4 and 2.4(±0.2) × 10−5 Ωcm2 for the as-deposited and annealed samples, respectively. Atomic force microscopy results show that the surfaces of both the contacts are remarkably smooth with a root-mean-square (rms) roughness of about 0.6 nm. The current-voltage-temperature (I-V-T) and calculation results indicate that, for the as-deposited contact, thermionic field emission is dominant, while for the annealed contact, field emission dominates the current flow.  相似文献   

2.
The performance of a novel Ge/Cu/Ti metallization scheme on n-type GaN has been investigated for obtaining thermally and electrically stable low-resistance ohmic contacts. Isochronal (2 min.) anneals in the 600–740°C temperature range and isothermal (690°C) anneals for 2–10 min. duration were performed in inert atmosphere. For the 690°C isothermal schedule, ohmic behavior was observed after annealing for 3 min. or longer with a lowest contact resistivity of 9.1 × 10−5 Ωcm2 after the 10 min. anneal for a net donor doping concentration of 9.2 × 1017 cm−Ω3. Mean roughness (Ra) for anneals at 690°C was almost constant at around 5 nm, up to an annealing duration of 10 min., which indicates a good thermal stability of the contact scheme.  相似文献   

3.
Recently, Au/Ni/p-type GaN ohmic contacts annealed in an air ambient have been widely investigated. However, to obtain a low specific-contact resistance, the annealing window is limited. In this study, to understand the oxidation function of metallic Ni, the Au/Ni/p-type GaN structure was annealed in an air ambient for 10 min at various temperatures. Using x-ray photoelectron spectroscopy (XPS) analysis, the metallic Ni was oxidized into NiO and NiO1.3 compositions at annealing temperatures of 500°C and 600°C, respectively. However, metallic Ni still existed on the interface of the Ni/p-type GaN annealed at 400°C. The associated barrier heights of 0.42 eV, 0.21 eV, and 0.31 eV were obtained with p-type GaN for the Ni, NiO, and NiO1.3 contacts, respectively. The hole concentrations of p-type NiO and p-type NiO1.3 were 2.6×1016 cm−3 and 2.0×1018 cm−3, respectively. The lower hole concentration of the p-type NiO would lead to reducing the valence-band bending of the p-type GaN, as well as the barrier height for holes crossing from the p-type NiO to the p-type GaN. The formation of NiO was thus an important issue for lowering the specific-contact resistance of the Au/Ni/p-type GaN ohmic contacts annealed in an air ambient.  相似文献   

4.
Fabrication procedures for silicon carbide power metal oxide semiconductor field effect transistors (MOSFETs) can be improved through simultaneous formation (i.e., same contact materials and one step annealing) of ohmic contacts on both the p-well and n-source regions. We have succeeded with the simultaneous formation of the ohmic contacts for p- and n-type SiC semiconductors by examining ternary Ni/Ti/Al materials with various compositions, where a slash symbol “/” indicates the deposition sequence starting with Ni. The Ni(20 nm)/Ti(50 nm)/Al(50 nm) combination provided specific contact resistances of 2 × 10−3 Ω-cm2 and 2 × 10−4 Ω-cm2 for p- and n-type SiC, respectively, after annealing at 800°C for 30 min, where the doping level of Al in the SiC substrate was 4.5 × 1018 cm−3 and the level of N was 1.0 × 1019 cm−3.  相似文献   

5.
We investigated the electrical properties of Ti(30?nm)/Al(200?nm) contacts to molecular beam epitaxy-grown N-polar n-GaN with different carrier concentrations. Samples with carrier concentration of 1.2?×?1018?cm?3 showed nonohmic behaviors when annealed at 300°C, but ohmic at 500°C and 700°C. All samples with carrier concentration of 2.0?×?1019?cm?3 exhibited ohmic behavior. x-Ray photoemission spectroscopy (XPS) results showed that, for samples with carrier concentration of 1.2?×?1018?cm?3, the Ga 2p core levels shift to lower or higher binding energy upon annealing at 300°C or above 500°C, respectively. Scanning transmission electron microscopy (STEM) results showed that, for samples with carrier concentration of 1.2?×?1018?cm?3, a wurtzite AlN layer (??2?nm thick) formed at the metal/GaN interface when the samples were annealed at 500°C. An interfacial wurtzite AlN layer also formed upon annealing at 700°C, but its thickness was ??4?nm. Based on the XPS and STEM results, the ohmic contact formation and degradation mechanisms are described and discussed.  相似文献   

6.
Ta/Au ohmic contacts are fabricated on n-type ZnO (∼1 × 1017 cm−3) epilayers, which were grown on R-plane sapphire substrates by metal organic chemical vapor deposition (MOCVD). After growth and metallization, the samples are annealed at 300°C and 500°C for 30 sec in nitrogen ambient. The specific contact resistance is measured to be 3.2×10−4 Ωcm2 for the as-deposited samples. It reduces to 5.4×10−6 Ωcm2 after annealing at 300°C for 30 sec without significant surface morphology degradation. When the sample is annealed at 500°C for 30 sec, the specific contact resistance increases to 3.3 × 10−5 Ωcm2. The layer structures no longer exist due to strong Au and Ta in-diffusion and O out-diffusion. The contact surface becomes rough and textured.  相似文献   

7.
We have investigated Nb single and Nb/Au metallization schemes for the formation of thermally stable ohmic contacts to p-GaN. It is shown that the asdeposited Nb and Nb/Au contacts exhibit rectifying behavior. However, both the contacts produce ohmic characteristics when annealed at 850°C. Measurements show that the 850°C Nb/Au and Nb contacts yield a specific contact resistance of 1.9×10−8 and 2×10−2 ωcm2, respectively. Schottky barrier heights are found to decrease with increasing annealing temperature. A comparison of the XRD and electrical results shows that the formation of gallide phases such as Ga-Nb and Ga-Au compounds, play a role in forming ohmic contacts. Atomic force microscopy results show that the surface morphology of the Nb contacts is fairly stable up to 850°C, while the Nb/Au contacts are slightly degraded upon annealing at 850°C.  相似文献   

8.
Four vanadium-based contacts to n-type Al0.6Ga0.4N were compared in this work. Both V/Al/Pd/Au and V/Al/V/Au contacts with optimized layer thicknesses provided lower specific-contact resistances than did the previously reported V/Al/Pt/Au ohmic contact. Specific contact resistances of the V/Al/Pd/Au (15 nm/85 nm/20 nm/95 nm) and V/Al/V/Au (15 nm/85 nm/20 nm/95 nm) contacts were 3×10−6 Ω·cm2 and 4×10−6 Ω·cm2, respectively. On the other hand, an analogous V/Al/Mo/Au contact never became ohmic, even after it was annealed at 900°C for 30 sec. Compared to the V/Al/Pd/Au contact, the V/Al/V/Au contact required a less severe annealing condition (30 sec at 700°C instead of 850°C). The V/Al/V/Au contact also provided a smoother surface, with a root-mean-square (RMS) roughness of 39 nm.  相似文献   

9.
The electrical and thermal properties of Ru and Ru/Au ohmic contacts on two-step-surface-treated p-GaN have been investigated using current-voltage (I–V) measurements and Auger electron spectroscopy. It is shown that annealing at 700°C for 2 min in a flowing N2 atmosphere improves the I–V characteristics of the contacts. For example, the annealed Ru and Ru/Au schemes produce a specific contact resistance of 3.4 (±0.9)×10−3 and 1.2 (±1.1)×10−3 Ωcm2, respectively. It is also shown that annealing results in a large reduction (by ∼100 meV) in the Schottky barrier heights of the Ru and Ru/Au contacts, compared to the as-deposited ones. The electrical properties of the two-step-surface-treated Ru/Au contacts are compared with those of the conventionally treated contacts.  相似文献   

10.
The annealing conditions and contact resistivities of Ta/Al ohmic contacts to n-type GaN are reported for the first time. The high temperature stability and mechanical integrity of Ti/Al and Ta/Al contacts have been investigated. Ta/Al (35 nm/115 nm) contacts to n-type GaN became ohmic after annealing for 3 min at 500°C or for 15 s at 600°C. A minimum contact resistivity of 5×10−6Ω cm2 was measured after contacts were repatterned with an Al layer to reduce the effect of a high metal sheet resistance. Ti/Al and Ta/Al contacts encapsulated under vacuum in quartz tubes showed a significant increase in contact resistivity after aging for five days at 600°C. Cross section transmission electron microscopy micrographs and electrical measurements of aged samples indicate that the increased contact resistivity is primarily the result of degradation of the metal layers. Minimal reactions at the metal/GaN interface of aged samples were observed.  相似文献   

11.
A bilayer Nd/Al metallization structure has been deposited onto low pressure organometallic vapor phase epitaxy grown n-type GaN ( 1 × 1018 cm−3) by electron-beam evaporation. Ohmic metal contacts were patterned photolithographically for standard transmission line measurement, and then thermally annealed at temperatures ranging from 200 to 350°C and from 500 to 650°C using conventional thermal annealing (CTA) and rapid thermal annealing (RTA), respectively. The lowest values for the specify contact resistivity of 9.8 × 10−6 Ω−cm2 and 8 × 10−6 Ω−cm2 were obtained using Nd/Al metallization with CTA of 250°C for 5 min and RTA of 600°C for 30 s. Examination of the surface morphology using atomic force microscopy as a function of annealing temperature revealed that the surface roughness was strongly influenced by conventional thermal annealing, it was smooth in the temperature range from 550 to 650°C for rapid thermal annealing. Auger electron spectroscopy depth profiling was employed to investigate the metallurgy and interdiffusion of contact formation.  相似文献   

12.
Electrical properties of Ni/Au ohmic contacts on p-type GaN were interpreted with the change of microstructure observed under transmission electron microscopy. The contact resistivity was decreased from 1.3×10−2 to 6.1×10−4 Ωcm2 after annealing at 600°C. The reduction is due to the dissolution of Ga atoms into Au−Ni solid solution formed during annealing, via the generation of Ga vacancies. Thus, net concentration of holes increased below the contact, resulting in the reduction of contact resistivity. At 800°C, N atoms decomposed; reacted with Ni, and forming cubic Ni4N. Consequently, N vacancies, acting as donors in GaN, were generated below the contact, leading to the increase of contact resistivity to 3.8×10−2 Ωcm2.  相似文献   

13.
Carbon structural transitions and ohmic contacts on 4H-SiC   总被引:4,自引:0,他引:4  
The structural properties of sputtered carbon films on SiC are investigated using X-ray photoelectron spectroscopy (XPS) and Raman scattering. The as-deposited films are amorphous with an sp2/sp3 ratio of 1. The sp2 carbon structures gradually increase with increasing temperatures and consist of amorphous aromatic-like carbon, polyene-like carbon, and nano-size graphite flakes. Schottky contacts on carbon/SiC are converted to ohmic contacts after annealing. The concentration of nano-graphitic flakes relative to the aromatic-like and polyene-like carbon increases nearly linearly with annealing temperature. Stacked graphitic structures are not observed. The specific contact resistivities are at 10−3–10−4Ωcm2 on the carbon/SiC after annealing from 1050°C to 1350°C.  相似文献   

14.
We have studied the influence of surface treatment and annealing temperature on the specific contact resistance of Au/Ni ohmic contacts to p-GaN with hole concentrations in the range of 1016 cm−3 to 1018 cm−3. The sample with a hole concentration of 1 × 1018 cm−3, treated with the surface treatment HCl:H2O = 3:1 solution and annealed at 500°C in a 90% N2 and 10% O2 atmosphere, yielded the lowest specific contact resistance of ~4 × 10−5 Ω cm2 and ~2 × 10−7 Ω cm2 at room temperature and at 150°C, respectively. To investigate the roles of interdiffusion between layer interfaces and the formation of NiO and nickel gallides, we examined the metallization stacks before and after annealing using high-resolution x-ray diffraction. We conclude that the nickel-gallide formation and the deterioration of the NiO layer are together responsible for the large deviation in contact resistances observed for samples annealed at various temperatures.  相似文献   

15.
Al(200 nm)/Ti(20 nm)/n-GaN contacts have been studied using transmission electron microscopy (TEM) and the resulting microstructures correlated with the observed variation in specific contact resistance (ρc). A minimum ρc value of 7×10−7 Ωcm2 was obtained after annealing at 550°C for 1 min in argon. Bulk metal and interfacial phases have been characterized, and explanations for the observed electrical behavior are proposed. A transition from TiN to AlN at the interface occurs between 650°C and 700°C.  相似文献   

16.
In this work, heavily aluminum (Al)-doped layers for ohmic contact formation to p-type SiC were produced by utilizing the high efficiency of Al incorporation during the epitaxial growth at low temperature, previously demonstrated by the authors’ group. The low-temperature halo-carbon epitaxial growth technique with in situ trimethylaluminum (TMA) doping was used. Nearly featureless epilayer morphology with an Al atomic concentration exceeding 3 × 1020 cm−3 was obtained after growth at 1300°C with a growth rate of 1.5 μm/h. Nickel transfer length method (TLM) contacts with a thin adhesion layer of titanium (Ti) were formed. Even prior to contact annealing, the as-deposited metal contacts were almost completely ohmic, with a specific contact resistance of 2 × 10−2 Ω cm2. The specific contact resistance was reduced to 6 × 10−5 Ω cm2 by employing a conventional rapid thermal anneal (RTA) at 750°C. Resistivity of the epitaxial layers better than 0.01 Ω cm was measured for an Al atomic concentration of 2.7 × 1020 cm−3.  相似文献   

17.
This paper presents the structural, chemical and electronic properties of Al/Ni/ Al-layers evaporated on 4H silicon carbide and then annealed at 1000°C for 5 min. The structure was investigated before and after annealing by transmission electron spectroscopy from cross-sectional specimens. With x-ray photoelectron spectroscopy, both element distribution and bonding energies were followed during sputtering through the alloyed metal-semiconductor contact. Voids are found in both annealed Ni/4H-SiC and Al/Ni/Al/4H-SiC contact layers, though closer to the metal-semiconductor interface in the former case. The first aluminum-layer is believed to prevent voids to be formed at the interface and also to reduce the oxide on the semiconductor surface. The contact was found to be ohmic with a specific contact resistance ρc - 1.8 × 10−5 Ωcm2 which is more than three times lower ρc than for the ordinary Ni/4H-SiC contact prepared in the same way.  相似文献   

18.
The transport properties of single GaN and InN nanowires grown by thermal catalytic chemical vapor deposition were measured as a function of temperature, annealing condition (for GaN) and length/square of radius ratio (for InN). The as-grown GaN nanowires were insulating and exhibited n-type conductivity (n ≈ 2×1017 cm−3, mobility of 30 cm2/V s) after annealing at 700°C. A simple fabrication process for GaN nanowire field-effect transistors on Si substrates was employed to measure the temperature dependence of resistance. The transport was dominated by tunneling in these annealed nanowires. InN nanowires showed resistivity on the order of 4×10−4 Ω cm and the specific contact resistivity for unalloyed Pd/Ti/Pt/Au ohmic contacts was near 1.09×10−7 Ω cm2. For In N nanowires with diameters <100 nm, the total resistance did not increase linearly with length/square of radius ratio but decreased exponentially, presumably due to more pronounced surface effect. The temperature dependence of resistance showed a positive temperature coefficient and a functional form characteristic of metallic conduction in the InN nanowires.  相似文献   

19.
The use of TaN, TiN, and ZrN diffusion barriers for Ti/Al-based contacts on n-GaN (n ∼ 3 × 1017 cm−3) is reported. The annealing temperature (600–1,000°C) dependence of the Ohmic contact characteristics using a Ti/Al/X/Ti/Au metallization scheme, where X is TaN, TiN, or ZrN, deposited by sputtering was investigated by contact resistance measurements and Auger electron spectroscopy (AES). The as-deposited contacts were rectifying and transitioned to Ohmic behavior for annealing at ≥600°C. A minimum specific contact resistivity of ∼6 × 10−5 Ω-cm−2 was obtained after annealing over a broad range of temperatures (600–900°C for 60 s), comparable to that achieved using a conventional Ti/Al/Pt/Au scheme on the same samples. The contact morphology became considerably rougher at the high end of the annealing range. The long-term reliability of the contacts at 350°C was examined; each contact structure showed an increase in contact resistance by a factor of three to four over 24 days at 350°C in air. AES profiling showed that the aging had little effect on the contact structure of the nitride stacks.  相似文献   

20.
Ohmic contacts with low resistance are fabricated on n-GaN films using Al/Ti bilayer metallization. GaN films used are 0.3 μm thick layers with carrier concentrations of 1 × 1019 cm−3 grown on the c-plane sapphire by ion-removed electron cyclotron resonance molecular beam epitaxy. The lowest value for the specific contact resistivity (ρc) of 1.2×10−8 Ω·cm2 was obtained with furnace annealing at 500°C for 60 min. This result shows the effectiveness of high carrier concentration GaN layers and the low temperature annealing for the realization of low resistance ohmic contacts. Sputtering Auger electron spectroscopy analysis reveals that Al diffuses into Ti layer and comes into contact with the GaN surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号