首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
在某一特定高度的建筑物表面上作用的风荷载为w=K·W_0′,其中W_0′为按kz作高度调整后的基本风压,K为风载体型系数。风载体型系数是风吹袭于建筑物表面所引起的实际压力(或吸力)与按风速风压关系式算得的风压之比值。旧规范称K为“空气动力系数”,其含义不够确切,实际上它并不表达风的动力作用,仅表示稳定风压在建筑表面上的反映,而且主要与建筑物的体型和尺度有关,因此新规范将它改名为“风载体型系数”。一、房屋各个面上体型系数的正负号问  相似文献   

2.
贵阳奥体中心主体育场由东、西两个呈牛角造型的罩篷构成,采用了预应力平面桁架斜交网格结构体系,最大悬挑49m。对其刚性模型进行了风洞试验,给出了平均风压系数、平均风荷载体型系数及风压分布规律并与规范计算值进行了比较,详细讨论了风向角对风压系数和体型系数的影响。结果表明:在大多数风向角下,西罩篷的风荷载要比东罩篷的大,罩篷立面迎风面都是正压,在所有风向角下罩篷上、下表面基本都是负压,负压分布的局部最大值通常出现的迎风罩篷上表面的前缘和下风向罩篷上表面的后缘部分。建议对于有上、下表面围护结构的建筑应分别按内、外风荷载体型系数设计。  相似文献   

3.
为解决因幕墙装饰条对超高层建筑外表面风压分布造成干扰使其分布不均衡导致的装饰条掉落问题,基于Davenport脉动风速功率谱及拟合函数、LES湍流模型和《建筑结构荷载规范》(GB 50009—2012)的推荐计算公式,利用计算流体动力学方法对装配不同型号装饰条的超高层建筑进行三维风场流体模拟。研究了超高层建筑及装饰条自身表面的风压分布特征和装饰条风荷载体型系数随其横截面体型特征及布置间距变化的规律。结果表明:超高层建筑外表面平直区域风压极值增高,拐角过渡区域风压极值降低,配置装饰条能够改善建筑表面拐角区域风压突变现象;当装饰条横截面为矩形时,其正侧表面的风荷载体型系数随截面高度增大而增大,横截面为梯形时,其侧表面的风荷载体型系数随下底的减小而减小,风荷载体型系数随装饰条间距变化的趋势不明显。  相似文献   

4.
L形和一字形双层幕墙平均风压分布特性的试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
双层通风幕墙的抗风设计需考虑外层幕墙的内、外表面风压以及内层幕墙的外表面风压,其风荷载取值不同于普通单层幕墙,使得其风载取值变得复杂。通过多个不同截面形式的模型进行双层幕墙压力分布风洞试验研究。介绍风洞试验模型的设计及数据处理方法,着重分析一字形双层幕墙和L形双层幕墙的内外层幕墙的平均风压分布。试验结果表明:L形双层幕墙和一字形双层幕墙的平均风压分布有很大的不同。对于一字形双层幕墙,无论是正风压还是负风压,都主要作用在内幕墙上,外幕墙除拐角区域外所承担的风压很小。对于L形双层幕墙,其外幕墙的正风压要比内幕墙的风压大;负风压时,L形双层幕墙的短边区域是外幕墙所承担的风压大于内幕墙,其长边区域则是内幕墙所受的风压要大于外幕墙。  相似文献   

5.
为了研究长宽比对矩形截面高层建筑表面风压分布的影响,进行7个长宽比建筑的风洞试验,分析长边和短边正迎风时各立面的风压分布,从短边正迎风时侧风面的风压分布研究气流的分离和再附,计算得到面体型系数,并将面体型系数与荷载规范值进行比较。研究表明:短边正迎风时,迎风面的风压分布与长宽比无关,背风面风压比较均匀,长宽比越大负平均风压系数绝对值越小;当长宽比大于4∶1时,侧风面负风压绝对值由大变小再变大,气流发生分离、附着、再分离。试验获得的迎风面体型系数随着深宽比的增大而增大,背风面体型系数随深宽比的分布总体上与荷载规范一致。  相似文献   

6.
黄鹏  戴银桃  顾明 《结构工程师》2011,27(3):98-106
以某实际结构工程为背景,在同济大学的TJ-3大气边界层风洞中对26个倒伞形挑篷群体结构进行了测压试验,得到了挑篷群上的平均风压系数、脉动风压系数、典型风向角下的分块体型系数和倾覆力矩系数,讨论了挑篷上表面、下表面和净风压的风压分布特性和最不利风向,并分析了挑篷间的相互气动干扰效应.结果表明,挑篷上的风荷载主要以向上的合...  相似文献   

7.
关于热压系数与风压系数的思考和建议   总被引:2,自引:0,他引:2  
符永正 《暖通空调》2001,31(3):21-23
通过分析指出:现行暖通规范中给出的热压系数取值范围是不正确的;隐含于风压差系数中的风载体型系数采用整个表面的平均值将造成较大的误差,提出了热压系数取值的两种改进途径,并建议针对建筑表面风压分布的不均匀性研究风压计算问题。  相似文献   

8.
青岛颐中体育场膜结构风洞试验研究   总被引:4,自引:0,他引:4  
通过风洞试验研究了在B类场地条件下 ,青岛颐中体育场膜结构挑篷建筑的风荷载特性 ,探讨了挑篷上各处膜面平均风荷载随来流风向角的变化规律 ,及其在各风向角下的表面风荷载的分布规律 ,确定了该设计方案随膜顶形状变化的风载体形系数 ,为进一步的结构计算提供了科学依据。  相似文献   

9.
对某一具有代表性的大型体育场看台挑篷刚性模型进行了表面测压风洞试验,详细介绍了试验所采用的主要技术参数和基本的数据处理方法,对比研究了在有、无临近建筑物干扰情况下的体育场挑篷表面风压分布的等值线图和结构典型测点在不同风向角下的风压变化规律。结果表明,邻近建筑对所测建筑的风荷载有一定的气动干扰影响,相关结论为结构的抗风设计提供了可靠的依据。  相似文献   

10.
借助风洞动态同步测压试验,对某办公楼镂空外墙双层幕墙平均风压分布特性进行分析,根据测点风压时程及其概率密度分布,并基于第三、四阶矩统计量对脉动风压分布的非高斯特性进行了描述。结果表明,外层幕墙的内表面风压和内层幕墙的外表面风压几乎相等,外层幕墙的净风压很小;建筑双层幕墙的风压脉动非高斯性的区域主要为建筑迎风下游尾流区,而外层幕墙由于内外压平衡的原因,其内表面边缘位置基本符合高斯性。在进行幕墙结构设计时,应对非高斯分布区域的风荷载设计予以特别重视,以保证其安全性。  相似文献   

11.
开洞矩形截面超高层建筑局部风压风洞试验研究   总被引:2,自引:0,他引:2  
基于一栋立面上有多个开洞的矩形截面超高层建筑的刚性模型表面压力测量风洞试验结果,分析了矩形截面超高层建筑在长边立面上不同开洞工况下建筑各表面平均风压系数和最不利风压系数的变化规律。试验结果表明:当建筑长边迎风时,开洞使得背风面洞口附近的平均风压系数绝对值增大,但迎风面上的平均风压系数变化很小;当建筑短边迎风时,开洞对洞口附近的平均风压系数和最不利正风压系数均只有微弱影响,但对其最不利负风压系数却有很大影响,特别是中部开洞,将使其周围的最不利负风压系数增大一倍以上;开洞对短边立面上的最不利风压系数不产生明显的影响。为有结构开洞的高层建筑洞口附近的围护结构设计提供了参考数据。  相似文献   

12.
针对外凸式矩形高层建筑结构外形复杂且其风荷载值无法通过建筑荷载规范直接获得的情况,以丝绸之路世界贸易中心外凸式矩形高层建筑为研究对象,通过风洞试验获得其风荷载值,并与规范给出的矩形结构体型系数进行对比,总结外凸式矩形建筑结构风荷载规律。基于Fluent软件,选用不同湍流模型,对外凸式矩形高层建筑进行数值模拟,并将计算结果与风洞试验结果进行比较,验证数值模拟方法的可行性。结果表明:该高层建筑迎风面的体型系数与规范接近; 背风面底部区域的体型系数比规范值大约70%,其他区域与规范值接近; 侧面体型系数均大于规范值,且最大负压出现在侧面; 对于外凸式矩形高层建筑结构,外凸结构风压较相邻区域增大,凹进结构的风压较相邻区域减小; 体型系数沿高度方向变化较大,凸出结构为迎风面时,其下方相邻区域体型系数比规范值小近50%; 数值计算结果与试验数据整体趋势基本一致; Realizable k-ε模型的数值模拟结果要优于Standard k-ε模型; 对于矩形高层建筑,凸出结构为迎风面时,其相邻上部区域和背风面下部区域风荷载不仅受凸出结构的影响,而且还受到凸出结构宽度的影响,其对体型系数的影响幅度为±20%之间。  相似文献   

13.
高层建筑悬挑遮阳板等小尺寸构件直接承受风荷载作用,在强风作用下的安全性备受关注。相对于建筑的整体尺寸,悬挑遮阳板很小,难以在缩尺模型上直接模拟,因此在实际工程的风洞试验研究中常常被简化或者忽略。研究中利用3D打印技术制作了精细化的有悬挑遮阳板的高层建筑风洞试验模型,并在打印遮阳板模型时直接预留测压管道,分析了水平悬挑遮阳板的风压分布规律及遮阳板对建筑立面风压的影响,并对基于建筑立面风压的悬挑遮阳板风压估计方法的估算误差进行了评估。研究结果表明:高层建筑水平悬挑遮阳板的最不利净风压的最大值出现在顶层遮阳板处;水平悬挑遮阳板的存在能较大程度地削弱建筑立面上的最不利负风压;悬挑遮阳板最不利风压可利用其上下两侧附近建筑立面测点的风压差近似估计,但对于建筑立面边缘附近的悬挑遮阳板端部以及建筑底部附近的最底层悬挑遮阳板上的最不利风压,这种方法的估算误差较大。  相似文献   

14.
Modern Movement in architecture has resulted in a large number of high-rise buildings with glazed facades which increase the energy load of the buildings. To combat this phenomenon in colder climates, architects have turned to using double skin facades. These facades comprise of: a completely transparent external facade; an internal skin; and an air layer between the two. Research on the performance of double skin facades mostly considers cold and moderate climates. In addition, data collection is normally based on simulations, rather than actual field measurements. In this paper a building with double skin facade was monitored for 2 weeks in summer and 2 weeks in winter in the hot arid climate of Iran, in order to observe the behaviour of the facade both in hot and cold conditions. Additionally, simulations were performed on the case study building with and without double skin facade, to assess the effectiveness of the facade. The results revealed that the temperature difference between the outer skin, the inner skin and the cavity can significantly save heating energy in winter. To reduce the cooling loads in summer it is essential to introduce additional techniques such as night ventilation and installation of shading devices for the cavity.  相似文献   

15.
基于刚性模型同步测压风洞试验结果,采用覆面积分频域计算方法,对广州松日总部大楼风荷载进行了研究.结果表明:相比顺风向而言,大楼楼层横风向振动曲一致性更强;不同风向角下顺风向与横风向基底弯矩分量组成各不相同,其与建筑立面形式相关;大楼振动舒适度满足规范要求.通过进行等效静风荷载和峰值加速度的敏感度分析,为结构优化设计提供了指导.  相似文献   

16.
田宗远  张丽新 《门窗》2011,(10):5-7
本文针对双层幕墙的风荷载特性,重点研究其内层幕墙的风荷载性能,并简单地介绍了双层幕墙的结构和形式,包括外循环式双层幕墙、内循环式双层幕墙、综合内外循环的双层幕墙,从而可以为进一步学习双层幕墙特性提供一种有效的思路。  相似文献   

17.
对圆角率为25%的正方形高层建筑刚性模型进行了测压试验,并对其风荷载特性进行了研究;分析了三分力系数和基底力矩系数随风向角的变化规律,给出了阻力系数平均值、根方差值和升力系数根方差值拟合结果;分析了最不利风向角下的风荷载功率谱,并采用经验公式进行拟合;分析了体型系数并与规范中正方形体型系数进行了对比。结果表明:对正方形建筑角部进行圆角化处理能明显降低建筑风荷载,且消除了功率谱曲线谱峰尖而窄的单峰现象,从本质上改变风荷载特性,有利于主体结构的抗风设计;角部区域负压较大,对幕墙抗风设计不利。  相似文献   

18.
无锡蠡湖科技大厦刚性模型的风洞试验测量了模型表面的平均和脉动风压,给出了不同风向角下各测点的平均风压系数和体型系数。讨论了风场和风向角对平均风压系数和体型系数的影响,以及两个正方形截面塔楼的相互气动干扰影响特点,得到双塔高层建筑中各单塔楼的总体体型系数大于单体建筑的结论。  相似文献   

19.
风压沿建筑物表面的分布具有复杂性,现行的GB50009-2001《建筑结构荷载规范》对风荷载平均风压取值的简化计算标准,只考虑到了大气层风压高度和建筑物体型等因素的影响。本文在风洞试验的基础上,通过对试验数据的数值分析和拟合,发现建筑物表面粗糙程度对建筑物表面的风压分布影响相当明显,并在此基础上得出了风压沿巨型框架结构不同表面粗糙程度下的简化计算公式。算例研究表明,建筑物表面不同粗糙程度引起的风压分布变化对规则巨型框架结构变形的影响较大,在设计中应予以考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号