首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
This study investigates the electromigration (EM) effect under a high current density (104?A/cm2) on the different interfacial compound phases at Sn(Cu) solder/electroless nickel immersion gold (ENIG) interfaces. The interfacial Ni3Sn4 phase at the Sn-0.7?wt.%Cu/ENIG joint interface was quickly depleted after a short period (50?h) of current stressing. The inference drawn is that the Ni atoms in the Ni3Sn4 phase at the joint interface are likely forced out under current stressing; however, the ternary (Cu,Ni)6Sn5 compound effectively reduces the EM-driven Ni flux into the Sn bump; thus, a significantly lower Ni(P) consumption was observed at the Sn-1?wt.%Cu/ENIG interface. The EM-induced Ni(P) dissolution rates in the Sn-0.2?wt.%Cu/ENIG and Sn-1?wt.%Cu/ENIG cases were calculated to be 0.028?μm/h and 0.018?μm/h, respectively. In addition, significant EM-assisted Ni3P formation was observed for the current-stressed Sn-0.2?wt.%Cu/ENIG and Sn-0.7?wt.%Cu/ENIG cases; however, for the Sn-1?wt.%Cu/ENIG case, formation of a Ni3P layer was scarcely observed. Moreover, the initial (Cu,Ni)6Sn5 that formed at the interface appeared compact with a layer-type structure, which reduced the EM-driven Ni diffusion.  相似文献   

2.
This study investigates the interfacial reactions between Sn-3.0wt.% Ag-0.5wt.%Cu (SAC) and Sn-0.7wt.%Cu (SC) on In/Ni/Cu multilayer substrates using the solid–liquid interdiffusion bonding technique. Samples were reflowed first at 160°C, 180°C, and 200°C for various periods, and then aged at 100°C for 100 h to 500 h. The scalloped Cu6Sn5 phase was formed at the SAC/In/Ni/Cu and SC/In/Ni/Cu interfaces. When the reflowing temperatures were 160°C and 180°C, a ternary Ni-In-Sn intermetallic compound (IMC) was formed when the samples were further aged at 100°C. This ternary Ni-In-Sn IMC could be the binary Ni3Sn4 phase with extensive Cu and In solubilities, or the ternary Sn-In-Ni compound with Cu solubility, or even a quaternary compound. As the reflow temperature was increased to 200°C, only one Cu6Sn5 phase was formed at the solder/substrate interface with the heat treatment at 100°C for 500 h. Mechanical test results indicated that the formation of the Ni-In-Sn ternary IMC weakened the mechanical strength of the solder joints. Furthermore, the solid–liquid interdiffusion (SLID) technique in this work effectively reduced the reflow temperature.  相似文献   

3.
Interfacial reactions in the Sn-(Cu)/Ni,Sn-(Ni)/Cu,and Sn/(Cu,Ni) systems   总被引:1,自引:0,他引:1  
Specimens with the Sn/Cu/Sn/Ni/Sn/Cu/Sn structure reacted at 200°C are prepared and examined. The Cu6Sn5 and Cu3Sn phases are formed at the Sn/Cu interface, and the Cu6Sn5 and Ni3Sn4 phases at the Sn/Ni interface. The reaction path in the original Cu/Sn/Ni part of the specimen is Cu/Cu3Sn/Cu6Sn5/Sn/Cu6Sn5/Ni3Sn4/Ni. The peculiar phenomenon of the Cu6Sn5 phase forming at both sides of the Sn phase is illustrated using the Sn-Cu-Ni phase diagram with a very wide compositional-homogeneity range of the Cu6Sn5 phase. Interfacial reactions at 240°C between pure Sn and (Cu,Ni) alloys of various compositions are determined. The Cu6Sn5 phase is formed when the NI content is less than 30 wt.%, and the Ni3Sn4 phase is formed when the Ni content is higher than 40 wt.%. When the Ni content is between 35 wt.% and 40 wt.%, both Cu6Sn5 and Ni3Sn4 phases are formed. It is also noticed that the formation of the Cu3Sn phase at the Sn/(Cu,Ni) interface is suppressed with more than 1wt.%Ni addition in the substrate.  相似文献   

4.
This study investigates the effects of various reaction times and Cu contents on the interfacial reactions between Sn-9Zn-xCu alloys and Ni substrates. After aging at 255°C for 1 h to 3 h, the Ni5Zn21 and Cu5Zn8 phases formed at the interface of Sn-9Zn/Ni and Sn-9Zn-1wt.%Cu/Ni couples, respectively. The (Ni,Zn)3Sn4 phase was found in the Sn-9Zn-4wt.%Cu/Ni couple, and the (Cu,Ni)6Sn5 and Cu6Sn5 phases formed, respectively, in the Sn-9Zn-7wt.%Cu/Ni and Sn-9Zn-10wt.%Cu/Ni couples. As the reaction time was increased from 5 h to 24 h, the (Cu5Zn8 + Ni5Zn21) phases replaced the Cu5Zn8 phase to form in the Sn-9Zn-1wt.%Cu/Ni couple; the (Ni,Zn)3Sn4 phase formed in the Sn-9Zn-4wt.%Cu/Ni couple, and (CuZn + Cu6Sn5) formed in the Sn-9Zn-10wt.%Cu alloys. Experimental results indicate that intermetallic compound (IMC) formation in Sn-9Zn-xCu/Ni couples changes dramatically with reaction time and Cu content. The Sn-Zn-Ni, Sn-Cu-Ni, and Sn-Zn-Cu ternary isothermal sections greatly help us to understand the IMC evolutions in the Sn-9Zn-xCu/Ni couples.  相似文献   

5.
The effects of adding a small amount of Cu into eutectic PbSn solder on the interfacial reaction between the solder and the Au/Ni/Cu metallization were studied. Solder balls of two different compositions, 37Pb-63Sn (wt.%) and 36.8Pb-62.7Sn-0.5Cu, were used. The Au layer (1 ± 0.2 μm) and Ni layer (7 ± 1 μm) in the Au/Ni/Cu metallization were deposited by electroplating. After reflow, the solder joints were aged at 160°C for times ranging from 0 h to 2,000 h. For solder joints without Cu added (37Pb-63Sn), a thick layer of (Au1−xNix)Sn4 was deposited over the Ni3Sn4 layer after the aging. This thick layer of (Au1−xNix)Sn4 can severely weaken the solder joints. However, the addition of 0.5wt.%Cu (36.8Pb-62.7Sn-0.5Cu) completely inhibited the deposition of the (Au1−xNix)Sn4 layer. Only a layer of (Cu1-p-qAupNiq)6Sn5 formed at the interface of the Cu-doped solder joints. Moreover, it was discovered that the formation of (Cu1-p-qAupNiq)6Sn5 significantly reduced the consumption rate of the Ni layer. This reduction in Ni consumption suggests that a thinner Ni layer can be used in Cu-doped solder joints. Rationalizations for these effects are presented in this paper.  相似文献   

6.
The Delco process is a major flip chip under-bump metallurgy process and its contact is soldered with the Ni-7wt.%V substrate; there are, however, only a few studies on the interfacial reactions between solders and Ni-V alloys. This study examines the interfacial reactions of the Sn-0.7wt.%Cu alloy with the Ni-7wt.%V, Ni-5wt.%V, and Ni-3wt.%V substrates at 250°C. It is found that the interfacial reactions between Sn-0.7wt.%Cu and Ni-V alloys are different from those between Sn-0.7wt.%Cu and pure Ni. In addition to the formation of the Cu6Sn5 phase, a new Sn-rich phase, denoted the Q phase, is found in the Ni-V substrate couples. Nucleation of the Ni3Sn4 phase is at a much earlier stage and the rates of consumption of Ni are much higher in Ni-V substrate couples than in Ni substrate couples. Knowledge of these different reactions is important for proper assessment of the flip chip products.  相似文献   

7.
It has been reported that minute Co additions to Sn-based solders are very effective for reducing undercooling, probably due to low Co solubility in Sn. In this study, Co solubility in molten Sn was determined experimentally. According to results of metallographic analysis, Co solubility in molten Sn is as low as 0.04 wt.% at 250°C. Interfacial reactions in Sn-Co/Ni couples at 250°C were examined for Co contents from 0.01 wt.% to 0.4 wt.%. The Ni3Sn4 phase was the only interfacial reaction phase in almost the entire Sn-0.01 wt.%Co/Ni couple. For Sn-Co/Ni couples with a Co content higher than 0.01 wt.%, a thin, continuous Ni3Sn4 layer and a discontinuous decahedron (Ni,Co)Sn4 phase were formed in the initial stage of reaction. The reaction products evolved with time. With longer reaction time, the Sn content in the decahedron (Ni,Co)Sn4 phase decreased, and the (Ni,Co)Sn4 phase transformed into the (Ni,Co)Sn2 phase and cleaved into a sheet, which then detached from the interface, after which Ni3Sn4 began to grow significantly with longer reaction times.  相似文献   

8.
During the reflow process of Sn-3.5Ag solder ball grid array (BGA) packages with Ag/Cu and Au/Ni/Cu pads, Ag and Au thin films dissolve rapidly into the liquid solder, and the Cu and Ni layers react with the Sn-3.5Ag solder to form Cu6Sn5 and Ni3Sn4 intermetallic compounds at the solder/pad interfaces, respectively. The Cu6Sn5 intermetallic compounds also appear as clusters in the solder matrix of Ag surface-finished packages accompanied by Ag3Sn dispersions. In the solder matrix of Au/Ni surface-finished specimens, Ag3Sn and AuSn4 intermetallics can be observed, and their coarsening coincides progressively with the aging process. The interfacial Cu6Sn5 and Ni3Sn4 intermetallic layers grow by a diffusion-controlled mechanism after aging at 100 and 150°C. Ball shear strengths of the reflowed Sn-3.5Ag packages with both surface finishes are similar, displaying the same degradation tendencies as a result of the aging effect.  相似文献   

9.
The solid-state, cross-interaction between the Ni layer on the component side and the Cu pad on the printed circuit board (PCB) side in ball grid array (BGA) solder joints was investigated by employing Ni(15 μm)/Sn(65 μm)/Cu ternary diffusion couples. The ternary diffusion couples were prepared by sequentially electroplating Sn and Ni on a Cu foil and were aged isothermally at 150, 180, and 200°C. The growth of the intermetallic compound (IMC) layer on the Ni side was coupled with that on the Cu side by the mass flux across the Sn layer that was caused by the difference in the Ni content between the (Cu1−x Ni x )6Sn5 layer on the Ni side and the (Cu1−y Ni y )6Sn5 layer on the Cu side. As the consequence of the coupling, the growth rate of the (Cu1−x Ni x )6 Sn5 layer on the Ni side was rapidly accelerated by decreasing Sn layer thickness and increasing aging temperature. Owing to the cross-interaction with the top Ni layer, the growth rate of the (Cu1−y Ni y )6Sn5 layer on the Cu side was accelerated at 150°C and 180°C but was retarded at 200°C, while the growth rate of the Cu3Sn layer was always retarded. The growth kinetic model proposed in an attempt to interpret the experimental results was able to reproduce qualitatively all of the important experimental observations pertaining to the growth of the IMC layers in the Ni/Sn/Cu diffusion couple.  相似文献   

10.
Interfacial reactions between Sn, Sn-3.0 wt.%Ag-0.5 wt.%Cu (SAC), and Sn-9 wt.%Zn (SZ) lead-free solders and Fe-42 wt.%Ni (alloy 42) substrates at 240°C, 255°C, and 270°C were investigated in this study. FeSn2, (Fe,Ni, Cu)Sn2, and (Ni,Fe)5Zn21 phases were formed, respectively, at the interface in the Sn/alloy 42, SAC/alloy 42, and SZ/alloy 42 couples. As the reaction time and temperature were increased, the layered intermetallic compound (IMC) assumed two distinct structures, i.e., a thicker layer and a pillar-shaped IMC, in all couples. The IMC thickness of these couples increased with the increase of reaction time and temperature. The IMC thickness was also proportional to the square root of the reaction time. The interfacial reaction mechanism of these couples was diffusion controlled.  相似文献   

11.
The binary eutectic Sn-3.5wt.%Ag alloy was soldered on the Ni/Cu plate at 250°C, the thickness of the Ni layer changing from 0 through 2 and 4 μm to infinity, and soldering time changing from 30 to 120 s at intervals of 30 s. The infinite thickness was equivalent to the bare Ni plate. The morphology, composition and phase identification of the intermetallic compound (IMC, hereafter) formed at the interface were examined. Depending on the initial Ni thickness, different IMC phases were observed at 30 s: Cu6Sn5 on bare Cu, metastable NiSn3 + Ni3Sn4 on Ni(2 μm)/Cu, Ni3Sn4 on Ni(4 μm)/Cu, and Ni3Sn + Ni3Sn4 on bare Ni. With increased soldering time, a Cu-Sn-based η-(Cu6Sn5)1−xNix phase formed under the pre-formed Ni-Sn IMC layer both at 60 s in the Ni(2 μm)/Cu plate and at 90 s in the Ni(4 μm)/Cu plate. The two-layer IMC pattern remained thereafter. The wetting behavior of each joint was different and it may have resulted from the type of IMC formed on each plate. The thickness of the protective Ni layer over the Cu plate was found to be an important factor in determining the interfacial reaction and the wetting behavior.  相似文献   

12.
Ni-7wt.%V(8at.%V) is an important under bump metallization material, and Sn is the primary element in most solders. This study examines the Sn/Ni-8at.%V interfacial reactions at 160°C, 200°C, 250°C, 300°C, 325°C, 350°C, and 400°C. Unlike the interfacial reactions in the Sn/Ni couples, a ternary T phase and the binary Ni3Sn4 phase are formed at 160°C. The vanadium solubility in the Ni3Sn4 phase is only 0.2 at.%, while the T phase contains 13.9at.%V. Similar results are found in the couples at 200°C, and the reaction paths are Sn/Ni3Sn4/T/Ni-V. The reaction paths are liquid/T/Ni3Sn4/Ni-V at 250°C and 300°C and are liquid/Ni3Sn4/Ni-V at 350°C and 400°C. Because the reaction products and the reaction rates in the Sn/Ni-8at.%V and Sn/Ni couples are different, reliabilities of the electronic products with the Ni-8at.%V barrier layer should not be assessed based only on the results of the Sn/Ni couples.  相似文献   

13.
To simulate the growth of Ni3Sn4 phase layers in Sn-based solder joints with Ni substrates during solid-state aging, Sn/(Cu1−x Ni x )6Sn5/Ni and Sn/Ni diffusion couples were aged isothermally at 180°C and 200°C, and the growth kinetics of the (Ni,Cu)3Sn4 and Ni3Sn4 layers in the respective couples were monitored during the isothermal aging. Once the (Ni,Cu)3Sn4 layer was formed at the (Cu,Ni)6Sn5/Ni interface, it grew unexpectedly fast with concurrent growth of voids formed in the Sn layer during prolonged aging at both temperatures. The results obtained from the various types of diffusion couples revealed that the voids formed in the Sn layer were Kirkendall voids, due to the (Ni,Cu)3Sn4 layer growing predominantly at the (Ni,Cu)3Sn4/Ni interface by fast diffusion of Sn across the (Ni,Cu)3Sn4 layer. It is proposed that the accelerated growth of the (Ni,Cu)3Sn4 and Ni3Sn4 layers after the formation of voids in the Sn layer is due to the relaxation of vacancy oversaturation and the enhanced annihilation rate of incoming vacancies in the presence of the voids in the Sn layer.  相似文献   

14.
For Cu pads used as under bump metallization (UBM) in flip chip technology, the diffusion behavior of Cu in the metallization layer is an important issue. In this study, isothermal interdiffusion experiments were performed at 240°C for different times with solid-solid and liquid-solid diffusion couples assembled in Cu/electroless-Ni (Ni-10 wt.% P) and Cu/electroless Ni (Ni-10 wt.% P)/ Sn-37Pb joints. The diffusion structure and concentration profiles were examined by scanning electron microscopy and electron microprobe analysis. The interdiffusion fluxes of Cu, Ni and P were calculated from the concentration profiles with the aid of Matano plane evaluation. The values of JCu, JNi, and JP decreased with increasing annealing time. The average effective interdiffusion coefficients on the order of 10−14 cm2/s were also evaluated within the diffusion zone. The amounts of Cu dissolved in the intermetallic compounds (IMCs) Ni3Sn4 and Ni3P that precipitate after annealing the Cu/electroless Ni/Sn-37Pb joints were about 0.25 at.% and 0.5 at.%, respectively. For the short period of annealing, it appears that the presence of electroless Ni (EN) with the Sn-Pb soldering reaction assisted the diffusion of Cu through the EN layer.  相似文献   

15.
Electromigration-induced failures in integrated circuits have been intensively studied recently; however, electromigration effects upon interfacial reactions have not been addressed. These electromigration effects in the Sn/Cu and Sn/Ni systems were investigated in this study by analyzing their reaction couples annealed at 200°C with and without the passage of electric current. The intermetallics formed were ε-(Cu3Sn) and η-(Cu6Sn5) phases in the Sn/Cu couples and Ni3Sn4 phase in the Sn/Ni couples. The same intermetallics were formed in the two types of couples with and without the passage of electric current. The thickness of the reaction layers was about the same in the two types of couples of the Sn/Cu system. In the Sn/Ni system, the growth of the intermetallic compound was enhanced when the flow direction of electrons and that of diffusion of Sn were the same. But the effect became inhibiting if the directions of these two were opposite. Theoretical calculation indicated that in the Sn/Ni system, the electromigration effect was significant and was 28% of the chemical potential effect for the Sn element flux when the Ni3Sn4 layer was 10 μm thick. For the Sn and Cu fluxes in the Sn/Cu reaction couples, similar calculations showed that the electromigration effects were only 2 and 4% of the chemical potential effects, respectively. These calculated results were in good agreement with the experimental observations that in the Sn/Cu system the electric current effects were insignificant upon the interfacial reactions.  相似文献   

16.
The In-Sn-Ni alloys of various compositions were prepared and annealed at 160°C and 240°C. No ternary compounds were found; however, most of the binary compounds had extensive ternary solubility. There was a continuous solid solution between the Ni3Sn phase and Ni3In phase. The Sn-In/Ni couples, made of Sn-In alloys with various compositions, were reacted at 160°C and 240°C and formed only one compound for all the Sn-In alloys/Ni couples reacted up to 8 h. At 240°C, Ni28In72 phase formed in the couples made with pure indium, In-10at.%Sn and In-11at.%Sn alloys, while Ni3Sn4 phase formed in the couples made of alloys with compositions varied from pure Sn to In-12at.%Sn. At 160°C, except in the In/Ni couple, Ni3Sn4 formed by interfacial reaction.  相似文献   

17.
As-cast Sn-0.4Co-0.7Cu solder contains both (Cu0.98Co0.02)6Sn5 and (Co0.85Cu0.15) Sn3 intermetallic phases in the matrix. After reflowing, the Au thin film in the electroless Ni/immersion Au (ENIG) surface-finished Sn-0.4Co-0.7Cu solder ball grid array (BGA) packages dissolved rapidly into the solder matrix to form AuSn4 intermetallics, and a thin layer of (Cu0.57Ni0.35Au0.08)6Sn5 intermetallic compound appeared at the solder/pad interface, growing very slowly during aging at 100°C. Increasing the aging temperature to 150°C caused the formation of a new intermetallic layer, (Ni0.79Cu0.21)3Sn4, at the (Cu0.57Ni0.35Au0.08)6Sn5/Ni interface. The reflowed Sn-0.4Co-0.7Cu BGA packages have a ball shear strength of 6.8 N, which decreases to about 5.7 N and 5.5 N after aging at 100°C and 150°C, respectively. The reflowed and aged solder joints fractured across the solder balls with ductile characteristics in ball shear tests.  相似文献   

18.
The reactive interdiffusion between a Sn-3.0wt.%Ag-0.7wt.%Cu solder and thin-film Ti/Ni/Ag metallizations on two semiconductor devices, a diode and a metal-oxide-semiconductor field-effect transistor (MOSFET), and a Au-layer on the substrates are studied. Comprehensive microanalytical techniques, scanning electron microscopy, transmission electron microscopy (TEM), and analytical electron microscopy (AEM) are employed to identify the interdiffusion processes during fabrication and service of the devices. During the reflow process of both diode and MOSFET devices, (1) the Ag layer dissolves in the liquid solder; (2) two intermetallics, (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5, form near the back metal/solder interface; and (3) the Au metallization in the substrate side dissolves in the liquid solder, resulting in precipitation of the (Au,Ni,Cu)Sn4 intermetallic during solidification. During solid-state aging of both diode and MOSFET solder joints at 125°C and 200°C, the following atomic transport processes occur: (1) interdiffusion of Cu, Ni, and Sn, leading to the growth of a (Ni,Cu)3Sn4 layer until the Ni layer is completely consumed; (2) interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer and unconsumed Ni layer to the Ti layer to form a solid solution; and (3) further interdiffusion of Au, Cu, Ni, and Sn through the (Ni,Cu)3Sn4 layer to from an (Au,Ti,Ni,Cu)Sn4 layer. The growth of the latter layer continues until the entire Ti layer is consumed.  相似文献   

19.
Growth kinetics of intermetallic compound (IMC) layers formed between the Sn-3.5Ag-5Bi solder and the Cu and electroless Ni-P substrates were investigated at temperatures ranging from 70°C to 200°C for 0–60 days. With the solder joints between the Sn-Ag-Bi solder and Cu substrates, the IMC layer consisted of two phases: the Cu6Sn5 (η phase) adjacent to the solder and the Cu3Sn (ε phase) adjacent to the Cu substrate. In the case of the electroless Ni-P substrate, the IMC formed at the interface was mainly Ni3Sn4, and a P-rich Ni (Ni3P) layer was also observed as a by-product of the Ni-Sn reaction, which was between the Ni3Sn4 IMC and the electroless Ni-P deposit layer. With all the intermetallic layers, time exponent (n) was approximately 0.5, suggesting a diffusion-controlled mechanism over the temperature range studied. The interface between electroless Ni-P and Ni3P was planar, and the time exponent for the Ni3P layer growth was also 0.5. The Ni3P layer thickness reached about 2.5 μm after 60 days of aging at 170°C. The activation energies for the growth of the total Cu-Sn compound layer (Cu6Sn5 + Cu3Sn) and the Ni3Sn4 IMC were 88.6 kJ/mol and 52.85 kJ/mol, respectively.  相似文献   

20.
A comparative study of the kinetics of interfacial reaction between the eutectic solders (Sn-3.5Ag, Sn-57Bi, and Sn-38Pb) and electroplated Ni/Pd on Cu substrate (Cu/Ni/NiPd/Ni/Pd) was performed. The interfacial microstructure was characterized by imaging and energy dispersive x-ray analysis in scanning electron microscope (SEM). For a Pd-layer thickness of less than 75 nm, the presence or the absence of Pd-bearing intermetallic was found to be dependent on the reaction temperature. In the case of Sn-3.5Ag solder, we did not observe any Pd-bearing intermetallic after reaction even at 230°C. In the case of Sn-57Bi solder the PdSn4 intermetallic was observed after reaction at 150°C and 180°C, while in the case of Sn-38Pb solder the PdSn4 intermetallic was observed after reaction only at 200°C. The PdSn4 grains were always dispersed in the bulk solder within about 10 μm from the solder/substrate interface. At higher reaction temperatures, there was no Pd-bearing intermetallic due to increased solubility in the liquid solder. The presence or absence of Pd-bearing intermetallic was correlated with the diffusion path in the calculated Pd-Sn-X (X=Ag, Bi, Pb) isothermal sections. In the presence of unconsumed Ni, only Ni3Sn4 intermetallic was observed at the solder-substrate interface by SEM. The presence of Ni3Sn4 intermetallic was consistent with the expected diffusion path based on the calculated Ni-Sn-X (X=Ag, Bi, Pb) isothermal sections. Selective etching of solders revealed that Ni3Sn4 had a faceted scallop morphology. Both the radial growth and the thickening kinetics of Ni3Sn4 intermetallic were studied. In the thickness regime of 0.14 μm to 1.2 μm, the growth kinetics always yielded a time exponent n >3 for liquid-state reaction. The temporal law for coarsening also yielded time exponent m >3. The apparent activation energies for thickening were: 16936J/mol for the Sn-3.5Ag solder, 17804 J/mol for the Sn-57Bi solder, and 25749 J/mol for the Sn-38Pb solder during liquid-state reaction. The corresponding activation energies for coarsening were very similar. However, an apparent activation energy of 37599 J/mol was obtained for the growth of Ni3Sn4 intermetallic layer during solid-state aging of the Sn-57Bi/substrate diffusion couples. The kinetic parameters associated with thickening and radial growth were discussed in terms of current theories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号