首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of industrial by-products and waste materials in concrete opens a whole new range of possibilities in the reuse of materials in the building industry. In this research study, concretes were made with chemical foundry sand (QFS) and green foundry sand (GFS) as substitution for raw sand. Also Electric arc furnace slag (EAFS) and blast furnace slag (BSF) were used as substitution for coarse raw aggregates in 25%, 50% and 100% of concrete production. Two concrete production stages were carried out. In stages 1 and 2, slump test and compressive and tensile splitting strengths and modulus of elasticity were determined. Due to adequate properties of all concretes found in stage 2, length change (during 56 weeks), sorptivity and high temperature exposure evaluation were also determined. The tests results obtained from concretes produced in stages 1 and 2 were compared with those of conventional concrete (CC) and the adequate use of the by-products for concrete production was verified.  相似文献   

2.
In this study, experiments have been carried out to evaluate the utilization of bottom ash (by-product of power plant) as fine and coarse aggregates in high-strength concrete with compressive strength of 60–80 MPa. Firstly, the chemical and physical characteristics of bottom ash particles, such as chemical compositions, specific gravity and SEM images, were investigated. Further experiments were conducted by replacing fine and coarse bottom ash with normal sand and gravel varying in percentages (25%, 50%, 75%, and 100%). The effect of fine and coarse bottom ash on the flow characteristics and density of concrete mixture was investigated in the aspect of particle shapes and paste absorption of bottom ash. Mechanical properties, such as compressive strengths and modulus of elasticity and flexural strength of high-strength concrete with bottom ash were evaluated. It was found that the slump flow of fresh concrete was slightly decreased from 530 mm to 420 mm when coarse bottom ash was replaced 100% of normal coarse aggregates, while fine bottom ash did not affect the slump flow. Moreover, it also showed that both of fine and coarse bottom ash aggregates had more influence on the flexural strength than compressive strength.  相似文献   

3.
This study forms part of a research project that was carried out on the development and application of high-strength concrete for large underground spaces. In order to develop 50 MPa high-strength concrete, eight optimal mixtures with different portions of fly ash and ground granulated blast furnace slag, which make the pozzolanic reaction, were selected. For assessments of shrinkage characteristics, free shrinkage tests with prismatic specimens and shrinkage crack tests were performed. The compressive strength was more than 30 MPa at 7 days, and stable design strength was acquired at 28 days. High-strength concrete containing blast furnace slag shows large autogenous shrinkage, while large shrinkage deformations and cracks will occur when mixtures are replaced with large volumes of cementitious materials. Hence, for these high-strength concrete mixtures, the curing conditions of initial ages that affect the reaction of hydration and drying effects need to be checked.  相似文献   

4.
The paper presents investigation of how the usage of bottom ash (BA), granulated blast furnace slag (GBFS), and combination of both of these materials as fine aggregate in concrete affects the concrete durability. To assess durability characteristics of concrete, durability tests were conducted and the results were evaluated comparing with reference concrete. Three series concrete were produced. GBFS, BA and GBFS+BA are replaced the 3–7 mm-sized aggregate. Five test groups were constituted with the replacement percentages as 10%, 20%, 30%, 40% and 50% in each series. These by-products were used as non-ground form in the concrete. Durability properties of the concretes were compared in order to study the possible advantages of different replacement ratios. According to results, GBFS and BA affects some durability properties of concrete positively in case of it is used as fine aggregate. Resistance to high temperature and surface abrasion are positively affected properties. Capillarity, drying-wetting and freezing-thawing resistance of the concrete can be accepted to some extent. Properties of by-products and its replacement ratio are controlling the influence level and direction. Comparison of the SEM images and test results show that chemical and physical properties of GBFS and BA are the main factors affecting the concrete durability. It is concluded that it is possible to produce durable concrete by using GBFS and BA as fine aggregate.  相似文献   

5.
Copper slag is a by-product obtained during the matte smelting and refining of copper. Current options of management of this slag are recycling, recovering of metal, production of value added products and disposal in slag dumps or stockpiles. This paper presents the results of a study undertaken to investigate the feasibility of using copper slag as coarse aggregates in high-strength concrete. The effects of replacing limestone coarse aggregate by copper slag coarse aggregate on the compressive strength, splitting tensile strength, and rebound hammer values of high-strength concretes are evaluated in this work. Concrete mixtures containing different levels of silica fume were prepared with water to cementitious materials ratios of 0.40, 0.35, and 0.30. The percentages of the cement replacements by silica fume were 0%, 6%, and 10%. The use of copper slag aggregate compared to limestone aggregate resulted in a 28-day compressive strength increase of about 10–15%, and a splitting tensile strength increase of 10–18%. It can be concluded from the results of this study that using copper slag as coarse aggregate in high-strength concrete is technically possible and useful.  相似文献   

6.
In this paper, palm oil fuel ash and rice husk–bark ash, which are by-products from electricity generating power plants and disposed as wastes in landfills, were used as a partial cement replacement. They were ground and incorporated into concrete at the levels of 20%, 40% and 55% by weight of binder. Compressive strength and water permeability of concretes containing ground palm oil fuel ash (GPOA) and ground rice husk–bark ash (GRBA) were investigated. From the tests, the replacement of Portland cement by both materials resulted in the higher water demand in concrete mixtures as compared to ordinary Portland cement (OPC) concrete with compatible workability. The compressive strengths of concretes containing 20% of GPOA and GRBA were as high as that of OPC concrete and were reduced as the increase in the replacement ratios. Although the compressive strengths of concrete with the replacement of GPOA or GRBA up to 40% were lower than OPC concrete, their water permeabilities were still lower than that of OPC concrete. These results indicate that both of GPOA and GRBA can be applied as new pozzolanic materials to concrete with an acceptable strength as well as permeability.  相似文献   

7.
Use of binary and ternary blends in high strength concrete   总被引:1,自引:0,他引:1  
Combinations of cement additions may provide more benefits for concrete than a single one. In this study, 80 high strength concretes containing several types and amounts of additions were produced. In the first stage, silica fume contents in binary blends that give the highest strengths were determined for different binder contents. In the second stage, a third binder (Class F or Class C fly ash or ground granulated blast furnace slag) was introduced to the concretes already containing Portland cement and silica fume in the amounts found in the first stage. Results indicated that ternary blends almost always made it possible to obtain higher strengths than Portland cement + silica fume binary mixtures provided that the replacement level by the additions was chosen properly. Moreover, the performance of slag in the ternary blends was better than Class F fly ash but worse than Class C fly ash.  相似文献   

8.
The suitability of using more “sustainable” concrete for wind turbine foundations and other applications involving large quantities of concrete was investigated. The approach taken was to make material substitutions so that the environmental, energy and CO2-impact of concrete could be reduced. This was accomplished by partial replacement of cement with large volumes of fly ash or blast furnace slag and by using recycled concrete aggregate.Five basic concrete mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag, (4) 70% replacement of cement with blast furnace slag and (5) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Recycled concrete aggregate was investigated in conventional and slag-modified concretes. Properties investigated included compressive and tensile strengths, elastic modulus, coefficient of permeability and durability in chloride and sulphate solutions. It was determined that the mixes containing 50% slag gave the best overall performance. Slag was particularly beneficial for concrete with recycled aggregate and could reduce strength losses. Durability tests indicated slight increases in coefficient of permeability and chloride diffusion coefficient when using recycled concrete aggregate. However, values remained acceptable for durable concrete and the chloride diffusion coefficient was improved by incorporation of slag in the mix. Concrete with 50% fly ash had relatively poor performance for the materials and mix proportions used in this study and it is recommended that such mixes be thoroughly tested before use in construction projects.  相似文献   

9.
Portland cement is the most widely used cement in the world. In the industrial by-products suitable for use as mineral admixtures in Portland concrete are ashes produced from the combustion of coal and granulated slag in metal industries. However, comparing such ashes with Portland cement, determining the hydration of this concrete is much more complex because of the reaction between calcium hydroxide and fly ash or slag. In this paper, the production of calcium hydroxide in cement hydration and its consumption in the reaction of mineral admixtures are considered in order to develop a numerical model for simulating the hydration of concrete, which contains fly ash or slag. The proposed numerical model includes the effects of water to binder ratios, slag or fly ash replacement ratios, curing temperature, and applied pressure. The heat evolution rate of fly ash- or slag-blended concrete is determined by the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, an adiabatic temperature rise in hardened blended concrete is evaluated based on the degree of hydration of the cement and mineral admixtures. The proposed model is verified through experimental data obtained from the concrete with different water-to-cement ratios and mineral admixture substitution ratios at elevated temperature and high pressure.  相似文献   

10.
The cementitious performance of a coarse granulated blast furnace slag, 2900 cm2/g, was investigated in concretes of 230, 280 and 330 kg binder/m3. First, the slag partially replaced 30%, 50% and 70% of Portland cement, the strength reduced as the amount of slag increased; however, for high binder contents, similar strengths were attained for lower Portland cement contents. Second, the slag was alkali activated with sodium silicate (moduli 1.7 and 2) at 4%, 6% and 8% %Na2O, the strength increased with the amount of slag in the concrete and developed faster as %Na2O increased. The microstructures of both type of concretes were dense; however, the strengths of activated slag were superior at similar binder loads, indicating that the hydration products of activated slag are of higher intrinsic strength.  相似文献   

11.
掺粉煤灰和矿渣粉大流动度混凝土的碳化性能   总被引:14,自引:2,他引:12  
研究了复掺Ⅱ级粉煤灰和同等细度矿渣粉且同时加入高交减水剂的大流动度(约180mm)混凝土的抗碳化性能。试验中改变了取代水泥量(最大为80%)及掺合料中粉煤灰和矿渣粉的比例等条件,混凝土碳化深度随时间的变化可用幂函数d=at^b表示,其中b值大多位于0.3-0.4,复掺可使取代水泥量提高,对设计寿命为50年的混凝土,在其他性能满足工程要求的条件下,仅就碳化性能而言,可掺加40%的粉煤灰,若采用粉煤灰与矿渣粉复掺,则在掺合料掺量分别为60%,70%及80%时,相应地可掺加40%,30%及15%的粉煤灰。  相似文献   

12.
The objective of this study is to the use of municipal solid waste incinerator (MSWI) fly ash as a partial replacement of fine aggregate or mineral filler in stone matrix asphalt (SMA) mixture. For saving natural rock and reusing solid waste, basic oxygen furnace slag (BOF slag) was used as part of coarse aggregate. And this makes SMA mixtures contain more than 90% solid waste materials by mass. A comparative study of the performance of two mixes designed using superior performance asphalt pavements (SUPERPAVE) and Marshall mix design procedures was carried out in this research. Samples from both mixes were prepared at the design asphalt contents and aggregate gradations and were subjected to a comprehensive mechanical evaluation testing. These tests included Marshall stability, water sensibility, resilient modulus, fatigue life and rutting. In all the performed tests SUPERPAVE mixtures proved their superiority over Marshall mixtures. TCLP test for environmental impact indicated that asphalt is an effective stabilization and solidification agent for heavy metal in MSWI ash. The heavy metal leachates in TCLP tests have great positive correlation with their initial concentration in waste. But Ni is an exception that lower initial concentration leaded to higher cumulative leaching rate.  相似文献   

13.
Relation between the characteristics of the aggregates and the properties of some materials—Experimental research works (laboratory or site). Industrial by-products used are as follows:
  • - as an aggregate:
  • ? stone and gravel pit refuse
  • ? crushed blast furnace slag
  • ? incenerator waste slag
  • - as a binder:
  • ? hydraulic and non-hydraulic fly ash
  • ? granulated blast furnace slag
  • ? hydrated and carbide lime refuse.
  • Pavement layers applied are as follows:
  • - unbound base courses: mechanical stabilisation using stone pit refuse, crushed blast furnace slag, waste incinerator slag
  • - with hydraulic binder: (cement, fly-ash, granulated slag):
  • ? lean concrete with crushed blast furnace slag and stone pit refuse
  • ? hydraulically bound crushed blast furnace slag, waste incinerator slag, and sand obtained as refuse at sieving
  • - with hydrocarbon binder:
  • ? bituminous stone pit refuse, bituminous crushed blast furnace slag, and bituminous mixture of gravel and sand and waste incinerator slag
  • ? rolled asphalt with crushed blast furnace slag.
  •   相似文献   

    14.
    钢渣复合掺合料配制混凝土的工作性能与力学性能研究   总被引:6,自引:2,他引:6  
    研究了钢渣复合掺合料配制混凝土的工作性能与力学性能,并从掺合料的相组成、水化特性、形貌特征、稀释效应及体积效应的角度对试验结果进行了综合分析。研究结果表明,不同掺量下钢渣对混凝土工作性能的影响不同,钢渣-矿渣复合掺合料对混凝土的工作性能有明显不利影响;钢渣的早期活性优于矿渣及粉煤灰,后期略低于矿渣但仍明显优于粉煤灰;高掺量下钢渣与矿渣有良好的复合超叠加效应,且二者的最佳比例为3:7。  相似文献   

    15.
    高性能再生混凝土强度试验研究   总被引:1,自引:0,他引:1  
    研究了再生粗、细骨料取代量、矿物掺和料等因素对再生混凝土强度的影响.结果表明:高品质再生细骨料混凝土的强度高于天然骨料混凝土,且随着再生细骨料取代量的增加而增大;高品质再生粗骨料混凝土的强度接近天然骨料混凝土强度;在高效减水剂的作用下,粉煤灰、矿粉和硅灰大掺量复掺,可制备工作性能良好、早期强度满足要求和后期强度有极好发展的高性能混凝土;再生骨料和各种掺和料的适应性比较好,超细矿粉和普通矿粉复掺能够明显提高再生混凝土强度.  相似文献   

    16.
    This study investigates the abrasion–erosion resistance of high-strength concrete (HSC) mixtures in which cement was partially replaced by four kinds of replacements (15%, 20%, 25% and 30%) of class F fly ash. The mixtures containing ordinary Portland cement were designed to have 28 days compressive strength of approximately 40–80 MPa. Specimens were subjected to abrasion–erosion testing in accordance with ASTM C1138. Experimental results show that the abrasion–erosion resistances of fly ash concrete mixtures were improved by increasing compressive strength and decreasing the ratio of water-to-cementitious materials. The abrasion–erosion resistance of concrete with cement replacement up to 15% was comparable to that of control concrete without fly ash. Beyond 15% cement replacement, fly ash concrete showed lower resistance to abrasion–erosion compared to non-fly ash concrete. Equations were established based on effective compressive strengths and effective water-to-cementitious materials ratios, which were modified by cement replacement and developed to predict the 28- and 91-day abrasion–erosion resistance of concretes with compressive strengths ranging from approximately 30–100 MPa. The calculation results are compared favorably with the experimental results.  相似文献   

    17.
    Self-compacting concretes (SCCs) have brought a promising insight into the concrete industry to provide environmental impact and cost reduction. However, the use of ternary and especially quaternary cementitious blends of mineral admixtures have not found sufficient applications in the production of SCCs. For this purpose, an experimental study was conducted to investigate properties of SCCs with mineral admixtures. Moreover, durability based multi-objective optimization of the mixtures were performed to achieve an optimal concrete mixture proportioning. A total of 22 concrete mixtures were designed having a constant water/binder ratio of 0.44 and a total binder content of 450 kg/m3. The control mixture included only a Portland cement (PC) as the binder while the remaining mixtures incorporated binary, ternary, and quaternary cementitious blends of PC, fly ash (FA), ground granulated blast furnace slag (S), and silica fume (SF). Fresh properties of the SCCs were tested for slump flow diameter, slump flow time, L-box height ratio, and V-funnel flow time. Furthermore, the hardened properties of the concretes were tested for sorptivity, water permeability, chloride permeability, electrical resistivity, drying shrinkage, compressive strength, and ultrasonic pulse velocity. The results indicated that when the durability properties of the concretes were taken into account, the ternary use of S and SF provided the best performance.  相似文献   

    18.
    An experimental investigation was conducted to study the effect of using copper slag as a fine aggregate on the properties of cement mortars and concrete. Various mortar and concrete mixtures were prepared with different proportions of copper slag ranging from 0% (for the control mixture) to 100% as fine aggregates replacement. Cement mortar mixtures were evaluated for compressive strength, whereas concrete mixtures were evaluated for workability, density, compressive strength, tensile strength, flexural strength and durability. The results obtained for cement mortars revealed that all mixtures with different copper slag proportions yielded comparable or higher compressive strength than that of the control mixture. Also, there was more than 70% improvement in the compressive strength of mortars with 50% copper slag substitution in comparison with the control mixture. The results obtained for concrete indicated that there is a slight increase in density of nearly 5% as copper slag content increases, whereas the workability increased significantly as copper slag percentage increased compared with the control mixture. A substitution of up to 40–50% copper slag as a sand replacement yielded comparable strength to that of the control mixture. However, addition of more copper slag resulted in strength reduction due to the increase in the free water content in the mix. Also, the results demonstrated that surface water absorption decreased as copper slag content increases up to 50% replacement. Beyond that, the absorption rate increased rapidly and the percentage volume of the permeable voids was comparable to the control mixture. Therefore, it is recommended that up to 40–50% (by weight of sand) of copper slag can be used as a replacement for fine aggregates in order to obtain a concrete with good strength and durability requirements.  相似文献   

    19.
    绿色高性能混凝土性能研究   总被引:3,自引:1,他引:2  
    朱平华  陈华建 《工业建筑》2003,33(8):11-12,18
    研究了一种由固体碱为激发剂制备的碱 -矿渣 -高钙粉煤灰渣新型胶凝材料配制的绿色高性能混凝土的渗透性、碱集料反应、工作性与抗压强度。结果表明 :该混凝土具有良好的抗Cl- 渗透的能力 ,不会产生膨胀性破坏的碱集料反应 ,矿渣与粉煤灰渣的质量比、水胶比、减水剂的掺量及粗骨料的种类对绿色高性能混凝土的工作性和强度有明显的影响 ,为混凝土的可持续发展指明了一条新途径。  相似文献   

    20.
    In this study, pulverized fly ash (FA), pulverized granulated blast furnace slag (PS) and silica fume (SF) were quantitatively studied with the incorporation of Portland cement (PC). PC was replaced with FA or PS at specified ratios. Basalt and quartz powder were used as an aggregate in the mixtures. Three different curing methods (standard, autoclave and steam curing) were applied to the specimens. Test results indicate that high strength concrete can be obtained with high volume mineral admixtures. Compressive strength of these mixtures is over 170 MPa. It seems that these mixtures can also be used for reactive powder concrete (RPC) production with some modifications.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号