首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study undertaken at the University of Liverpool has investigated the potential for using recycled demolition aggregate in the manufacture of precast concrete building blocks. Recycled aggregates derived from construction and demolition waste (C&DW) can be used to replace quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The manufacturing process used in factories, for large-scale production, involves a “vibro-compaction” casting procedure, using a relatively dry concrete mix with low cement content (≈100 kg/m3). Trials in the laboratory successfully replicated the manufacturing process using a specially modified electric hammer drill to compact the concrete mix into oversize steel moulds to produce blocks of the same physical and mechanical properties as the commercial blocks. This enabled investigations of the effect of partially replacing newly quarried with recycled demolition aggregate on the compressive strength of building blocks to be carried out in the laboratory. Levels of replacement of newly quarried with recycled demolition aggregate have been determined that will not have significant detrimental effect on the mechanical properties. Factory trials showed that there were no practical problems with the use of recycled demolition aggregate in the manufacture of building blocks. The factory strengths obtained confirmed that the replacement levels selected, based on the laboratory work, did not cause any significant strength reduction, i.e. there was no requirement to increase the cement content to maintain the required strength, and therefore there would be no additional cost to the manufacturers if they were to use recycled demolition aggregate for their routine concrete building block production.  相似文献   

2.
The use of recycled aggregates for preparing concrete products has been successfully implemented and gaining wider acceptance. However, the allowable level of contaminating materials (e.g., crushed clay bricks, crushed ceramic tiles, waste glass cullet, wood chips, etc.) in the recycled concrete aggregate, in the some of the current specifications, is low (<1%) due to stringent quality control standards that are usually taken from specifications for raw granular virgin materials. This paper presents a recent study on the properties of concrete paving blocks prepared with recycled concrete aggregates that are contaminated by materials (tiles, clay bricks, glass, wood) commonly found in the construction and demolition waste. The density, compressive strength, tensile splitting strength, water absorption value, abrasion resistance, skid resistance and some durability parameters were measured for laboratory prepared samples. The results show that it is feasible to allow a higher level of contamination in the recycled concrete aggregates for making the concrete products. Recommendations are made on how the specifications could be revised to facilitate a wider application of recycled aggregates that is contaminated by foreign materials.  相似文献   

3.
全面梳理和分析了再生混凝土的发展历程与演变特点,提出了全再生混凝土的基本概念,基于文献分析,针对不同组分、不同取代率下再生混凝土的工作性能、力学性能和耐久性能开展了对比分析。整理了当再生粗骨料、再生细骨料分别单取代且取代率达到100%及再生粗、细骨料双取代的取代率都达到100%后混凝土各性能变化的量值,最后总结了再生粉体对混凝土的影响,在文献脉络梳理的基础上,明确了全再生混凝土的内涵和外延,并尝试总结了全再生混凝土的力学性能理论预测模型,给出了今后全再生混凝土的研究方向和建议。研究结果表明:在众多的配合比设计方法中,基于自由水灰比的配合比设计方法最为成熟,应用最为广泛; 再生骨料单取代混凝土的工作性能、力学性能和耐久性能均随着取代率的增加而降低,对于再生粗、细骨料双取代的混凝土,再生粗骨料对抗压强度的影响要大于再生细骨料,再生细骨料对工作性能的影响要大于再生粗骨料。  相似文献   

4.
The effect of replacement of fine and coarse aggregates with recycled glass on the fresh and hardened properties of Portland cement concrete at ambient and elevated temperatures is studied. Percentages of replacement of 0–100% of aggregates with fine waste glass (FWG), coarse waste glass (CWG), and fine and coarse waste glass (FCWG) were considered. Soda-lime glass used for bottles was washed and crushed to fine and coarse aggregate sizes for use in the concrete mixes. Samples were cured under 95% RH at room temperatures (20–22 °C), heated in the oven to the desired temperatures, allowed to cool to ambient temperatures, and then tested for their residual compressive strength. The compressive strength of the concrete samples made with waste glass was measured at temperatures up to 700 °C. Moreover, the effect of the percentages of replacement with recycled glass on the slump values and initial and final setting time of concrete has also been measured.  相似文献   

5.
Recycling waste building materials from construction and demolition (C&D) sites is increasingly investigated for economical and environmental reasons. Roller compacted concrete (RCC) is a special dry concrete mix; laid down and compacted like a soil, it is especially used for the construction of massive structures like dams or large horizontal surfaces like road foundation. In this paper, natural concrete slabs were cured in water, sea water, chloride solutions or sulphate solutions and then crushed to obtain virgin and contaminated (polluted) recycled aggregates. The aim of this research is the total replacement (100% coarse and fine) of natural aggregates (NA) by recycled concrete aggregates (RA) in the composition of a roller compacted concrete. The natural and recycled aggregates are characterised and compared. The mechanical properties and durability performances of concrete with contaminated RA are analysed. The experimental results showed that the polluted RA are much richer in chlorides than in sulphates and are leached if they are soaked in water. Significant differences were observed between the properties of original and new concrete and the results demonstrated the need of taking these contaminations into account.  相似文献   

6.
A study undertaken at the University of Liverpool has investigated the potential for using construction and demolition waste (C&DW) as aggregate in the manufacture of a range of precast concrete products, i.e. building and paving blocks and pavement flags. Phase II, which is reported here, investigated concrete paving blocks. Recycled demolition aggregate can be used to replace newly quarried limestone aggregate, usually used in coarse (6 mm) and fine (4 mm-to-dust) gradings. The first objective, as was the case with concrete building blocks, was to replicate the process used by industry in fabricating concrete paving blocks in the laboratory. The compaction technique used involved vibration and pressure at the same time, i.e. a vibro-compaction technique. An electric hammer used previously for building blocks was not sufficient for adequate compaction of paving blocks. Adequate compaction could only be achieved by using the electric hammer while the specimens were on a vibrating table. The experimental work involved two main series of tests, i.e. paving blocks made with concrete- and masonry-derived aggregate. Variables that were investigated were level of replacement of (a) coarse aggregate only, (b) fine aggregate only, and (c) both coarse and fine aggregate. Investigation of mechanical properties, i.e. compressive and tensile splitting strength, of paving blocks made with recycled demolition aggregate determined levels of replacement which produced similar mechanical properties to paving blocks made with newly quarried aggregates. This had to be achieved without an increase in the cement content. The results from this research programme indicate that recycled demolition aggregate can be used for this new higher value market and therefore may encourage demolition contractors to develop crushing and screening facilities for this.  相似文献   

7.
再生细集料对水泥混凝土物理力学性能的影响   总被引:2,自引:0,他引:2  
废弃混凝土通过一系列再生工艺可以得到再生混凝土细集料,将其部分或全部替代天然砂配制混凝土可以达到变废为宝的目的,但是再生混凝土细集料特殊的性质会使得掺再生细集料的混凝土性能与普通混凝土之间存在较大的差异.在研究再生混凝土细集料的粒径和物理特性对水泥混凝土物理力学性能影响的基础上,探讨再生混凝土细集料对混凝土的抗气渗性能...  相似文献   

8.
沙莎 《山西建筑》2014,(27):119-121
对混凝土废弃物破碎回收后取得的再生细骨料按不同替代率拌合成的混凝土力学性能进行了研究分析,通过不同再生细骨料取代率下的混凝土标准立方体抗压强度和劈裂强度对比试验,分析了再生细骨料对混凝土力学性能的影响效果。  相似文献   

9.
再生混凝土骨料试验研究   总被引:11,自引:1,他引:11  
在试验基础上分别配制了高(H)、中(M)、低(L)3种强度等级的原生混凝土.将原生混凝土进行人工破碎、筛分后制得再生混凝土粗、细骨料,然后分别对再生混凝土粗、细骨料以及原生混凝土粗、细骨料的一系列物理力学性能进行了研究.研究结果表明:再生混凝土粗、细骨料与原生混凝土粗、细骨料之间性质差别较大;在原材料相同的情况下,由配合比不同的原生混凝土破碎后所得到的不同再生混凝土骨料之间性质差异很小,这对于控制再生混凝土骨料以及再生混凝土的质量波动是非常有意义的.  相似文献   

10.
This work was aimed at evaluating both mechanical and rheological behavior of cementitious mortars prepared with three different kinds of recycled aggregate: one is made of concrete scraps obtained as rejected material from precast concrete production, one is based on recycled bricks and the last one is from a recycling plant in which demolition waste is suitably treated and, consequently, it is a miscellany of rubble. The experimental results showed that mechanical strength of the mortars prepared by substituting the natural sand with each one of these recycled aggregates is significantly lower than the reference. Nevertheless, the bond strength at the interface between mortar and brick resulted to be higher for mortars prepared with recycled aggregates and, in particular, when the fine aggregate coming from recycling of demolition waste was used.  相似文献   

11.
建造于20世纪的老旧房屋拆除垃圾往往含有大量的红砖块。红砖的各项性能与废混凝土有较大区别,但目前建筑固废处理工艺不能较好地分离红砖骨料。为高效合理利用含有大量红砖的再生砖混骨料,对强度等级分别为C25、C30和C35的3根天然骨料混凝土梁和3根再生砖混骨料混凝土梁进行受弯性能试验研究,分析再生砖混骨料混凝土梁相比于同强度的天然骨料混凝土梁在受力过程、破坏特征、变形能力与承载力等方面的差异。试验结果表明:再生砖混骨料混凝土梁在加载至破坏过程中,具有同天然骨料混凝土梁相似的受力阶段,且同样符合平截面假定。但相比同强度的天然骨料混凝土梁,再生砖混骨料混凝土梁极限承载能力略小,在加载过程中梁表面裂缝更易产生与发展,刚度下降更显著,变形更大,且从屈服到破坏产生的变形较小,延性较差。  相似文献   

12.
A judicious use of resources, by using by-products and waste materials, and a lower environmental impact, by reducing carbon dioxide emission and virgin aggregate extraction, allow to approach sustainable building development. Recycled aggregate concrete (RAC) containing supplementary cementitious materials (SCM), if satisfactory concrete properties are achieved, can be an example of such sustainable construction materials.In this work concrete specimens were manufactured by completely replacing fine and coarse aggregates with recycled aggregates from a rubble recycling plant. Also RAC with fly ash (RA + FA) or silica fume (RA + SF) were studied.Concrete properties were evaluated by means of compressive strength and modulus of elasticity in the first experimental part. In the second experimental part, compressive and tensile splitting strength, dynamic modulus of elasticity, drying shrinkage, reinforcing bond strength, carbonation, chloride penetration were studied. Satisfactory concrete properties can be developed with recycled fine and coarse aggregates with proper selection and proportioning of the concrete materials.  相似文献   

13.
Clay brick generated from construction sites is usually delivered to landfills for disposal. With the limited landfill space in Hong Kong, there is an immediate need to explore the possible use of crushed clay brick as a new civil engineering material. In Hong Kong, government specifications promote the use of paving blocks made with 70–100% recycled concrete aggregate in order to facilitate the recycling of construction and demolition (C&D) waste. This paper presents a recent study at the Hong Kong Polytechnic University on the investigation of blending recycled concrete aggregate and crushed clay brick as aggregates in the production of paving blocks.The results indicated that the incorporation of crushed clay brick reduced the density, compressive strength and tensile strength of the paving blocks. Due to the high water absorption of crushed clay brick particles, the water absorption of the resulting paving blocks were higher than that of the paving blocks that did not incorporate crushed clay brick. Although it was found that crushed clay brick impaired the quality of the resulting paving blocks to a certain extent, the paving blocks using 50% crushed clay brick met the minimum requirements specified by AS/NZS 4455 and ETWB of Hong Kong (Grade B) for pedestrian areas. Furthermore, it was feasible to produce paving blocks prepared with 25% crushed clay brick that satisfied the compressive strength requirement for paving blocks (Grade B) prescribed by ETWB of Hong Kong for trafficked area.  相似文献   

14.
分别对C30、C50、C60不同强度等级的废旧混凝土进行破碎,筛选得到不同粒径的再生骨料,研究再生骨料的性能指标;采用聚乙烯醇与水玻璃以1∶1比例配制成不同浓度的强化液,研究强化改性对再生骨料吸水率和压碎值的影响;将再生骨料与天然骨料复配应用于混凝土中,研究其对混凝土性能的影响。结果表明:随着再生骨料掺量的增加,再生混凝土的坍落度与扩展度总体呈现先减小后增大的趋势,当再生骨料掺量在12%~24%时,再生混凝土的坍落度为200 mm左右,28 d抗压强度达到42 MPa左右。  相似文献   

15.
再生骨料混凝土空心砌块的试验研究   总被引:3,自引:0,他引:3  
周贤文 《混凝土》2007,(5):89-91
利用再生骨料生产混凝土空心砌块对于建筑节能和墙体革新以及废弃混凝土高效回收利用具有重要的现实意义.研究了采用再生骨料生产的混凝土空心砌块的受压性能,主要包括再生骨料不同级配、粉煤灰掺量以及掺加纤维情况对混凝土空心砌块抗压强度的影响.试验结果表明,通过合理的选择再生骨料、粉煤灰和纤维的掺量,采用再生骨料生产的混凝土空心砌块具有理想的抗压强度,能够用做砌体结构中的承重砌块.  相似文献   

16.
This paper presents the development of lightweight aggregate concrete using fine aggregate that is manufactured from recycled waste polyethylene terephthalate (PET) bottles. Investigations on waste PET lightweight aggregate concrete included three phases: examination of the properties of waste PET lightweight aggregates (WPLA), analysis of the properties of mortar when WPLA was used as fine aggregate, and analysis of the properties of concrete when WPLA was used as fine aggregate. The results of the first phase showed that the WPLA had a density of 1390 kg/m3, a water absorption of 0% and a bulk density of 844 kg/m3. WPLA fineness modulus (F.M.), however, was 4.11, which is higher than the F.M. of river sand. This is because the WPLA was single graded. The results of the second phase showed that for the mortar, in which the WPLA was used as a fine aggregate, the flow value increased, while the compressive strength decreased proportionally to the addition of WPLA with elapsed time. In addition, the amount of water absorption by unit area was higher than for the control mortar (without WPLA) when the WPLA content was either 40% or 60%. For the third phase, the results showed that the slump of the WPLA concrete increased as the WPLA content increased regardless of the water-cement ratio (W/C). In comparison to the control concrete, the 28-day WPLA concrete compressive strength decreased by 5%, 15% and 30%, with an increase of WPLA content of 25%, 50% and 75%, respectively. In addition, for a W/C of 0.49, the structural efficiency (compressive strength/density ratio) of the concrete containing 25% of WPLA was higher than that for the control concrete.  相似文献   

17.
混合应用天然与再生骨料混凝土的基本性能   总被引:4,自引:0,他引:4  
王耀新 《混凝土》2005,(8):49-53,70
对配合比相同和坍落度相同两种情况下,不同再生骨料掺入量混凝土的基本性能进行了系统的试验研究。试验中再生骨料的掺入量分别为0,25%,50%,75%和100%。试验结果表明,在配合比相同的情况下,随着再生骨料掺入量的增加.混凝土的工作性能以及回弹值、抗压强度、劈裂抗拉强度、抗折强度和弹性模量均有不同程度的降低。在坍落度相同的情况下,随着再生骨料掺入量的增加.混凝土的抗压强度、抗折强度和弹性模量也均降低且较配合比相同的情况下降低更多。最后根据本文的试验结果,建议了两种情况下不同再生骨料掺入量混凝土的基本力学性能计算公式。并进一步对比了两种情况下得到的计算公式.结果表明,两种情况下得到的公式均可以用来描述不同再生骨料掺入量混凝土的基本力学性能。  相似文献   

18.
用不同粗骨料(石灰石碎石、再生粗骨料)、细骨料(河砂、人工砂、再生细骨料)两两相组合,共配制6组高性能混凝土进行对比试验,测试抗压强度、弹性模量、收缩和徐变4个性能指标并进行显著性分析。结果表明,骨料类型对高性能混凝土抗压强度的影响不明显,但对弹性模量、收缩和徐变性能都有显著影响。粗骨料对弹性模量和收缩性能的影响较为显著,细骨料对徐变的影响较为显著。再生粗骨料混凝土收缩、徐变早期发展较慢,而中后期的发展速度明显快于普通混凝土;再生细骨料混凝土收缩、徐变的发展速度始终远快于普通混凝土。在此基础上,提出了考虑粗、细骨料类型和骨料种类的高性能混凝土收缩和徐变的预测模型。  相似文献   

19.
再生粗骨料取代率对混凝土基本性能的影响   总被引:6,自引:2,他引:6  
徐蔚 《混凝土》2006,(9):45-47
系统研究了相同水灰比情况下再生粗骨料取代率对混凝土基本性能的影响。试验中再生粗骨料取代率分别为0,30%,50%,70%和100%,保持混凝土的水灰比不变。主要研究了再生粗骨料取代率对混凝土立方体坍落度、抗压强度、棱柱体抗压强度、峰值应变和泊松比、弹性模量、劈裂抗拉强度以及抗折强度的影响。试验结果表明,再生粗骨料取代率对上述各性能指标均有一定影响,但程度不同。同时发现,除抗折强度外,普通混凝土各基本力学性能指标问的关系均不适用各种再生骨料取代率混凝土。  相似文献   

20.
再生细骨料质量标准及检验方法的研究   总被引:6,自引:0,他引:6  
我国目前尚无再生细骨料的技术标准,制定再生细骨料的技术标准,对于推动再生混凝土产业化具有重要意义.再生细骨料的质量要求,除了JGJ52-92要求的细度模数、级配、泥块含量、有害物质含量(包括云母、轻物质、有机物、硫化物及硫酸盐、氯离子含量等)外,还应增加再生胶砂需水量比(简称需水量比)、再生胶砂强度比(简称强度比)和坚固性.胶砂需水量比和胶砂强度比是笔者首次提出的两项指标,它们很好地反映了再生细骨料与普通细骨料之间的性能差异.依据胶砂需水量比、胶砂强度比和坚固性指标,提出了对再生细骨料进行分类的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号