首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports a part of an ongoing laboratory investigation in which the compressive strength of ground granulated blast-furnace slag (GGBFS) concrete studied under dry and wet curing conditions. In the study, a total of 45 concretes, including control normal Portland cement (NPC) concrete and GGBFS concrete, were produced with three different water-cement ratios (0.3, 0.4, 0.5), three different cement dosages (350, 400, 450 kg/m3) and four partial GGBFS replacement ratios (20%, 40%, 60%, 80%). A hyperplasticizer was used in concrete at various quantities to provide and keep a constant workability. Twelve cubic samples produced from fresh concrete were de-moulded after a day, then, six cubic samples were cured at 22±2 °C with 65% relative humidity (RH), and the remaining six cubic samples were cured at 22±2 °C with 100%RH until the samples were used for compressive strength measurement at 28 days and three months. Three cubic samples were used for each age and curing conditions. The comparison was made on the basis of compressive strength between GGBFS concrete and NPC concrete. GGBFS concretes were also compared within themselves. The comparisons showed that compressive strength of GGBFS concrete cured at 65%RH was influenced more than that of NPC concrete. It was found that the compressive strength of GGBFS concrete cured at 65%RH was, at average, 15% lower than that of GGBFS concrete cured at 100%RH. The increase in the water-cementitious materials ratios makes the concrete more sensitive to dry curing condition. The influence of dry curing conditions on GGBFS concrete was marked as the replacement ratio of GGBFS increased.  相似文献   

2.
Investigated herein is the effect of temperature on heat development in cement pastes and concretes with and without silica fume cured at relatively high temperatures often encountered in tropical environment. With an initial temperature of 30°C, adiabatic temperature rise of the concrete with 8% silica fume as cement replacement was similar to that of the control Portland cement concrete up to about 18 h. After 24 h, however, the temperature of the silica fume concrete was lower than that of the control concrete. Since the concrete with 8% silica fume had a higher 28-day compressive strength (72.5 MPa) than the control concrete without silica fume (59.2 MPa), the concrete with silica fume is likely to have a lower temperature rise as compared with the control concrete of equivalent 28-day strength by reducing cementitious materials content with the same water content. The extent of heat evolution in the silica fume pastes was generally greater at lower temperatures of 20-50°C, but less at 65°C than in the control paste. At the relatively high curing temperatures, the degree of cement hydration in the paste with silica fume was lower than that in the control cement paste at early ages. However, the pozzolanic reaction started even before 24 h after water was added.  相似文献   

3.
Investigated herein is the effect of temperature on heat development in cement pastes and concretes with and without silica fume cured at relatively high temperatures often encountered in tropical environment. With an initial temperature of 30°C, adiabatic temperature rise of the concrete with 8% silica fume as cement replacement was similar to that of the control Portland cement concrete up to about 18 h. After 24 h, however, the temperature of the silica fume concrete was lower than that of the control concrete. Since the concrete with 8% silica fume had a higher 28-day compressive strength (72.5 MPa) than the control concrete without silica fume (59.2 MPa), the concrete with silica fume is likely to have a lower temperature rise as compared with the control concrete of equivalent 28-day strength by reducing cementitious materials content with the same water content. The extent of heat evolution in the silica fume pastes was generally greater at lower temperatures of 20–50°C, but less at 65°C than in the control paste. At the relatively high curing temperatures, the degree of cement hydration in the paste with silica fume was lower than that in the control cement paste at early ages. However, the pozzolanic reaction started even before 24 h after water was added.  相似文献   

4.
This paper reports result of a study conducted to investigate the effect of curing methods on the properties of plain and blended cement concretes. The concrete specimens were prepared with Type I, silica fume, and fly ash cement concretes. They were cured either by covering with wet burlap or by applying two types of curing compounds, namely water-based and acrylic-based. The effect of curing methods on the properties of plain and blended cement concretes was assessed by measuring plastic and drying shrinkage, compressive strength, and pulse velocity. Results indicated that the strength development in the concrete specimens cured by covering with wet burlap was more than that in the specimens cured by applying water – and acrylic-based curing compounds. Concrete specimens cured by applying curing compounds exhibited higher efficiency in decreasing plastic and drying shrinkage strain than specimens cured by covering with wet burlap. The performance of acrylic-based curing compound was better than that of water-based curing compound. The data developed in this study indicate that curing compounds could be utilized in situations where curing with water is difficult. Among the two curing compounds investigated, acrylic-based curing compound performed better than the water-based curing compound.  相似文献   

5.
This paper presents results of a study conducted to evaluate the mechanical properties and durability characteristics of ordinary Portland cement (OPC) and blended cement (silica fume and fly ash) concrete specimens prepared with electric arc furnace dust (EAFD). Concrete specimens were prepared with and without EAFD. In the silica fume cement concrete, silica fume constituted 8% of the total cementitious material while fly ash cement concrete contained 30% fly ash. EAFD was added as 2% replacement of cement in the OPC concrete and 2% replacement of the total cementitious content in the blended cement concretes. Mechanical properties, such as compressive strength, drying shrinkage, initial and final setting time, and slump retention were determined. The durability characteristics were evaluated by measuring water absorption, chloride permeability, and reinforcement corrosion. The initial and final setting time and slump retention increased due to the incorporation of EAFD in both OPC and blended cement concretes. The drying shrinkage of EAFD cement concrete specimens was more than that of concrete specimens without EAFD. The incorporation of EAFD was beneficial to OPC concrete in terms of strength gain while such a gain was not noted in the blended cement concretes. However, the strength differential between the blended cement concretes with EAFD and the corresponding concretes without EAFD was not that significant. The water absorption and chloride permeability, however, decreased due to the incorporation of EAFD in both the OPC and blended cement concretes. The corrosion resistance of OPC and blended cement concrete specimens increased due to the addition of EAFD.  相似文献   

6.
This paper presents experimentally investigated the effects of pozzolan made from various by-product materials on mechanical properties of high-strength concrete. Ground pulverized coal combustion fly ash (FA), ground fluidized bed combustion fly ash (FB), ground rice husk–bark ash (RHBA), and ground palm oil fuel ash (POFA) having median particle sizes less than 11 μm were used to partially replace Portland cement type I to cast high-strength concrete. The results suggest that concretes containing FA, FB, RHBA, and POFA can be used as pozzolanic materials in making high-strength concrete with 28-day compressive strengths higher than 80 MPa. After 7 days of curing, the concretes containing 10–40% FA or FB and 10–30% RHBA or POFA exhibited higher compressive strengths than that of the control concrete (CT). The use of FA, FB, RHBA, and POFA to partially replace Portland cement type I has no significant effect on the splitting tensile strength and modulus of elasticity as compared to control concrete or silica fume concretes. This results suggest that the by-products from industries can be used to substitute Portland cement to produce high-strength concrete without alteration the mechanical properties of concrete.  相似文献   

7.
Impact resistance and strength performance of concrete mixtures with 0.36 and 0.46 water–cement ratios made with polypropylene and silica fume are examined. Polypropylene fiber with 12-mm length and four volume fractions of 0%, 0.2%, 0.3% and 0.5% are used. In pre-determined mixtures, silica fume is used as cement replacement material at 8% weight of cement. The results show that incorporating polypropylene fibers improves mechanical properties. The addition of silica fume facilitates the dispersion of fibers and improves the strength properties, particularly the impact resistance of concretes. It is shown that using 0.5% polypropylene fiber in the silica fume mixture increases compressive split tensile, and flexural strength, and especially the performance of concrete under impact loading.  相似文献   

8.
This paper presents the findings of an experimental program seeking to understand the effect of mineral admixtures on fresh and hardened properties of sustainable self-consolidating concrete (SCC) mixes where up to 80% of Portland cement was replaced with fly ash, silica fume, or ground granulated blast furnace slag. Compressive strength of SCC mixes was measured after 3, 7, and 28 days of moist curing. It was concluded in this study that increasing the dosage of fly ash increases concrete flow but also decreases segregation resistance. In addition, for the water-to-cement ratio of 0.36 used in this study, it was observed that the compressive strength decreases compared to control mix after 28 days of curing when cement was partially replaced by 10%, 30%, and 40%of fly ash. However, a fly ash replacement ratio of 20% increased the compressive strength by a small margin compared to the control mix. Replacing cement with silica fume at 5%, 10%, 15%, and 20% was found to increase compressive strength of SCC mixes compared to the control mix. However, the highest 28 day compressive strength of 95.3 MPa occurred with SCC mixes in which 15% of the cement was replaced with silica fume.  相似文献   

9.
Drying shrinkage can be a major reason for the deterioration of concrete structures. The contraction of the material is normally hindered by either internal or external restraints so that tensile stresses are induced. These stresses may exceed the tensile strength and cause concrete to crack. The present study investigated compressive strength and particularly drying shrinkage properties of self-compacting concretes containing binary, ternary, and quaternary blends of Portland cement, fly ash (FA), ground granulated blast furnace slag (GGBFS), silica fume (SF), and metakaolin (MK). For this purpose, a total of 65 self-compacting concrete (SCC) mixtures were prepared at two different water to binder ratios. It was observed that drying shrinkage lessened with the use of FA, GGBFS, and MK while incorporation of SF increased the drying shrinkage.  相似文献   

10.
Use of binary and ternary blends in high strength concrete   总被引:1,自引:0,他引:1  
Combinations of cement additions may provide more benefits for concrete than a single one. In this study, 80 high strength concretes containing several types and amounts of additions were produced. In the first stage, silica fume contents in binary blends that give the highest strengths were determined for different binder contents. In the second stage, a third binder (Class F or Class C fly ash or ground granulated blast furnace slag) was introduced to the concretes already containing Portland cement and silica fume in the amounts found in the first stage. Results indicated that ternary blends almost always made it possible to obtain higher strengths than Portland cement + silica fume binary mixtures provided that the replacement level by the additions was chosen properly. Moreover, the performance of slag in the ternary blends was better than Class F fly ash but worse than Class C fly ash.  相似文献   

11.
Blast furnace slag aggregates (BFSA) were used to produce high-strength concretes (HSC). These concretes were made with total cementitious material content of 460–610 kg/m3. Different water/cement ratios (0.30, 0.35, 0.40, 0.45 and 0.50) were used to carry out 7- and 28-day compressive strength and other properties. Silica fume and a superplasticizer were used to improve BFSA concretes. Slump was kept constant throughout this study. Ten percent silica fume was added as a replacement for ordinary portland cement (OPC) in order to obtain HSC. The silica fume was used as highly effective micro-filler and pozzolanic admixture. Superplasticizer at dosages of 2%, 1.5%, 1%, 0.5% and 0% by OPC weight for 0.30, 0.35, 0.40, 0.45 and 0.50 w/c ratios, respectively, were adopted. Results showed that compressive strength of BFSA concretes were approximately 60–80% higher than traditional (control) concretes for different w/c ratios. These concretes also had low absorption and high splitting tensile strength values. It is concluded that BFSA, in combination with other supplementary cementitious materials, can be utilized in making high strength concretes.  相似文献   

12.
This paper presents the results of an extensive experimental study on the compressive and splitting tensile strength of high-strength concrete with and without polypropylene (PP) fibers after heating to 600 °C. Mixtures were prepared with water to cementitious materials ratios of 0.40, 0.35, and 0.30 containing silica fume at 0%, 6%, and 10% cement replacement and polypropylene fibers content of 0, 1, 2, and 3 kg/m3. A severe strength loss was observed for all of the concretes after exposure to 600 °C, particularly the concretes containing silica fume despite their good mechanical properties at room temperature. The range of 300–600 °C was more critical for concrete having higher strength. The relative compressive strengths of concretes containing PP fibers were higher than those of concretes without PP fibers. The splitting tensile strength of concrete was more sensitive to high temperatures than the compressive strength. Furthermore, the presence of PP fibers was more effective for compressive strength than splitting tensile strength above 200 °C. Based on the test results, it can be concluded that the addition of 2 kg/m3 PP fibers can significantly promote the residual mechanical properties of HSC during heating.  相似文献   

13.
This research investigates the properties of fresh and hardened concretes containing locally available natural lightweight aggregates, and mineral admixtures. Test results indicated that replacing cement in the structural lightweight concrete developed, with 5–15% silica fume on weight basis, caused up to 57% and 14% increase in compressive strength and modulus of elasticity, respectively, compared to mixes without silica fume. But, adding up to 10% fly ash, as partial cement replacement by weight, to the same mixes, caused about 18% decrease in compressive strength, with no change in modulus of elasticity, compared to mixes without fly ash. Adding 10% or more of silica fume, and 5% or more fly ash to lightweight concrete mixes perform better, in terms of strength and stiffness, compared to individual mixes prepared using same contents of either silica fume or fly ash.  相似文献   

14.
高兴凯  周宗辉  芦令超  刘鹏  程新 《混凝土》2007,(3):25-26,29
根据混凝土的配合比设计及试验室现场操作,配制出工作性良好的阿利特-硫铝酸钡钙水泥混凝土.采用对比试验研究的方法,研究了不同水灰比对该水泥混凝土抗压强度的影响,并将其与相同配合比的普通混凝土的力学性能进行比较.试验结果表明:两种混凝土的抗压强度均随水灰比的增大而减小;相同配合比下,该水泥混凝土的抗压强度比同龄期的普通混凝土有了明显的改善,尤其早期抗压强度,1d强度提高了50%~65%.微观结构分析发现:阿利特-硫铝酸钡钙水泥混凝土中水化产物的粒径分布均匀,界面粘结状况较好,结构较为致密.  相似文献   

15.
根据混凝土的配合比设计及试验室现场操作,配制出工作性良好的阿利特-硫铝酸钡钙水泥混凝土。采用对比试验研究的方法,研究了不同水灰比对该水泥混凝土抗压强度的影响,并将其与相同配合比的普通混凝土的力学性能进行比较。试验结果表明:两种混凝土的抗压强度均随水灰比的增大而减小;相同配比下,该水泥混凝土的抗压强度比同龄期的普通混凝土有了明显的改善,尤其早期抗压强度,1 d强度提高了50%~65%。微观结构分析发现:阿利特-硫铝酸钡钙水泥混凝土中水化产物的粒径分布均匀,界面粘结状况较好,结构较为致密。  相似文献   

16.
掺超细粉煤灰活性粉末混凝土的研究   总被引:25,自引:0,他引:25  
采用525普能硅酸盐水泥、硅灰、超细粉煤灰、高效减水剂和标准砂等原材料及湿热养护工艺,可配制出抗压强度达200MPa的活性粉末混凝土,在掺入一定量的钢纤维后,活性粉末混凝土的抗压强度近250MPa,抗折强度达45MPa,对超细粉煤灰掺量、水胶比、砂胶比和钢纤维掺量等因素于掺超细粉煤灰活性粉末混凝土抗折、抗压强度的影响进行了详细的讨论。  相似文献   

17.
吴星春  江晨晖 《工业建筑》2007,37(3):72-74,116
高炉矿渣粗骨料(BFSA)可用于配制高强混凝土(HSC)。通过5个不同水胶比(0.30、0.35、0.40、0.45、0.50)的BFSA混凝土与普通骨料混凝土(基准混凝土)在7d和28d龄期的抗压强度等力学性能比较,得出以BFSA生产的高强混凝土具有一系列优良性能,如不同水胶比的BFSA混凝土的抗压强度比相应的基准混凝土高出26%~87%;BFSA混凝土比基准混凝土具有更低的渗透性、更高的劈拉强度和更低的脆性。试验过程中,以10%的硅粉(SF)等量取代普通硅酸盐水泥,并掺加超塑化剂,从而有效改善BFSA混凝土的性能。为了便于比较,试验过程中保持所有混凝土拌合物坍落度相同。  相似文献   

18.
研究了内掺硅粉对混凝土强度和流动性的影响;根据试验数据总结出内掺硅粉混凝土的28d抗压强度规律;研究了混凝土后期强度的增长规律;采用P.O.42.5普通硅酸盐水泥、中砂、5~25mm碎石,内掺7%硅粉,水胶比0.219,掺加适量的聚羧酸复合缓凝高效减水剂,可配制出C110高强度大流动性混凝土。  相似文献   

19.
The objective of this study was to evaluate the influence of silica fume on the hydration heat of concrete. Portland cement was replaced by silica fume in amounts from 10 % to 30 % by mass in concrete with w/(c+sf) ratios varying between 0.25 and 0.45. A superplasticizer was used to maintain a fluid consistency. The heat of hydration was monitored continuously by a semi-adiabatic calorimetric method for 10 days at 20 °C. The calorimetric study indicated that the hydration was modified by the presence of silica fume. In the early stages, the silica fume showed a high activity and accelerated the hydration rate as compared to that of the reference concrete. The fine silica fume particled provided nucleation sites for hydrates growth. Then the pozzolanic activity took over and increased both strength and the hydration heat. A substitution of Portland cement by 10% with silica fume produced greater strength and cumulative heat of hydration as compared to that of the reference concrete.  相似文献   

20.
Properties of autoclaved lightweight aggregate concrete   总被引:1,自引:0,他引:1  
Many researches have been carried out on production and properties of pre-cast concretes. Currently, most of them have focused on normal concrete, and are unable to completely represent the behavior of lightweight concrete (LWC). In this study, physical and mechanical properties of LWC produced with diatomite and pumice lightweight aggregates after autoclave curing were investigated. In the production of LWC, 0–4 mm maximum sizes of aggregates were used. Cement content and water/cement ratio were kept at 300 kg/m3 and 0.20, respectively. The specimens were prepared in 50×100 mm cylindrical shape, and after 24 h of demoulding exposed to autoclave curing for 2, 4, 6, 8 and 10 h. Besides, two different cures were applied on the specimens as in water and in air at 20 °C±2, respectively. At the end of autoclaving and environmental cure, compressive strength in 7, 28 and 590 d, unit weight, specific porosity, thermal conductivity and water absorption were tested. Also, microstructures of LWC produced with diatomite and pumice aggregate were investigated. As a result, it is concluded that by autoclaving of specimens in 8–10 h, especially, compressive strength of specimens have increased 75% of strength of 28 aged specimens cured in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号