首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了固溶处理后不同时效温度对Ti-5Al-2V-3Fe-0.2O合金热轧板材显微组织与力学性能的影响。结果表明:热轧态板材组织主要由α相和β相组成;固溶处理后,组织中出现了α相向β相转变现象,由初生α相及亚稳态β转变组织组成;通过时效处理,亚稳态β转变组织部分分解,析出次生α相并形成晶间β相,随着时效温度从450℃升高到550℃,亚稳态β转变相进一步减少,次生α相增多并长大,初生α相逐渐粗化;与热轧态相比,固溶时效处理后板材抗拉强度和断后伸长率均提高,并且随着时效温度升高,抗拉强度逐渐降低,伸长率逐渐提高;940℃×15min/AC+500℃×6 h/AC热处理后的板材强度和伸长率分别达到1260 MPa、8.5%,具有较佳的综合性能。  相似文献   

2.
利用高速线材轧机制备Ti-6Al-4V合金小规格棒材(d10 mm),研究固溶与时效热处理工艺对棒材显微组织与力学性能的影响。结果表明:棒材组织主要由α相和β相组成,随着固溶温度从900℃升高到990℃,棒材中α相含量减少而β相含量逐渐增多,显微组织出现了由初生等轴α相向针状β相转变进而向全片层状β转变的过程,棒材拉伸强度逐渐升高,而伸长率明显降低;棒材在930℃固溶后进行时效处理,随着时效温度从450℃升高到650℃,β相转变组织分解析出α相,组织主要由(α+β)相和β相混合组成,α相不断集聚长大,使组织粗大,棒材抗拉强度降低,伸长率升高;经(930℃,30 min,水淬)+(550℃,4 h,空冷)热处理后,棒材强度和塑性达到最佳配合,抗拉强度为1031 MPa,伸长率为12.5%。  相似文献   

3.
研究了不同固溶处理温度对冷轧Ti-4.5Al-2.5V-1.5Fe-0.25O合金显微组织与力学性能的影响。结果表明,合金主要由α相和β相组成,随着固溶处理温度的升高,合金中β相含量逐渐增多,显微组织出现了由初生等轴α相向β转变组织转变、进而向全片层状β相转变组织和晶间α相的转变过程;合金的抗拉强度和硬度呈增加趋势、伸长率呈降低趋势,合金的力学性能变化趋势与固溶处理温度升高过程中显微组织的转变密切相关。  相似文献   

4.
通过改变固溶温度、固溶后的冷却方式和时效温度,研究了热处理制度对TA19钛合金微观组织和力学性能的影响。研究表明,随着固溶温度的升高,初生α相含量减少,使得伸长率和断面收缩率减小;而升高固溶温度使得β相中析出的细小次生α相增多,从而使室温抗拉强度增大。固溶处理后采用水冷时,由于从β相中析出大量细小弥散的次生α相,室温抗拉强度较大,但伸长率和断面收缩率较小。时效温度对微观组织和力学性能影响较小。  相似文献   

5.
《热处理》2021,(4)
采用电子束增材制造技术制备了 TC4钛合金试棒,对试棒进行了 700~1 000℃的退火、900~960℃的固溶处理和550℃时效处理,检测了热处理后合金的显微组织和力学性能。结果表明:随着退火温度的升高,合金晶粒内α相的取向差增大,β相含量增加,针状α相数量减少,α相发生粗化;1 000℃退火的合金α相板条呈等轴状,组织明显粗大;随着固溶温度的升高,合金组织中针状次生α相数量增多,组织粗化;960℃固溶处理的合金组织为全片层状的次生α相;随着退火温度的升高,合金的抗拉强度和塑性均下降;随着固溶温度的升高,合金的抗拉强度增加而塑性降低,960℃固溶处理的合金抗拉强度最高,达1 167.2 MPa,断后伸长率为6%;经900℃×1 h固溶处理、水冷随后550℃×4 h时效处理的合金力学性能最好,抗拉强度为1 075.7 MPa,断后伸长率为10%。  相似文献   

6.
研究固溶温度和时效温度对Ti62421s高温钛合金显微组织、相成分和常温拉伸性能的影响。结果表明:在两相区进行固溶处理时,随着固溶温度的升高,合金组织中的α相减少,β转变组织(βt)增多,当固溶温度进入β相区后为篮网状β转变组织;随着时效温度的升高,α相长大;随着固溶温度和时效温度的升高,β转变组织中只有Al含量升高,其他合金元素的含量都下降;随着固溶温度的升高,强度和断面收缩率先升高后迅速降低,伸长率逐渐下降;经(980℃,1h,AC)+(550℃,8h,AC)热处理后,合金可以获得较好的综合性能,抗拉强度达1077.04MPa,伸长率达13.6%,断面收缩率为26.02%。  相似文献   

7.
对TC4-DT合金板材(α+β)两相区在不同温度及冷却方式下进行热处理,研究其组织和性能的变化。结果表明,在两相区固溶处理得到等轴或双态组织,随着固溶温度的提高,初生α相含量减少,析出的β相转变组织略有粗化,合金强度升高,伸长率略有下降。两相区热处理后纵、横向的拉伸力学性能没有明显的各向异性。900℃固溶处理后,采用水冷方式固溶处理的合金在不明显降低塑性的情况下可提高拉伸强度。  相似文献   

8.
研究了固溶温度及冷却速度对Ti3510钛合金锻件的显微组织及力学性能的影响。XRD结果表明,固溶后空冷的合金相组成主要为α相及β相,固溶后水冷的合金相主要为α'相及β相,且有少量的α'相析出。显微组织表明,合金微观组织形貌对冷却速度十分敏感,固溶后空冷的合金主要为细小的针状或点状析出物,固溶后水冷的合金主要为板条状次生相。室温拉伸结果表明,随着固溶温度的升高,空冷后的合金强度及塑性总体上缓慢提高,至800℃处理时强度达到最高,抗拉强度达到998 MPa,伸长率为10%。水冷处理后合金强度下降,但塑性提高。850℃固溶后水冷,合金的抗拉强度达到812 MPa,伸长率为25%。  相似文献   

9.
王瑞琴  葛鹏  廖强  侯鹏  刘宇 《金属热处理》2022,47(4):196-198
研究了固溶冷却方式对一种新型短时用高温钛合金热轧板材显微组织和力学性能的影响。结果表明,新型短时用高温钛合金板材经固溶处理及不同方式冷却+时效后,合金的组织均为α+β相,随着冷却速率的增加,初生α相的含量和尺寸逐渐减小,3种冷却方式下析出的次生α相尺寸都较细小,但炉冷析出的次生α相数量较少,空冷和水冷析出的次生α相尺寸和数量相差不大。随着冷却速率的提高,合金的室温、600 ℃及700 ℃高温强度提高而塑性降低。合金固溶处理后采用空冷方式可获得较好的综合力学性能。  相似文献   

10.
采用OM、SEM和XRD等方法研究了固溶时效热处理对近β型钛合金(Ti-3Al-6Mo-2Fe-Zr)显微组织、力学性能及耐腐蚀性能的影响。结果表明,随着固溶温度的升高,初生α相的含量逐渐降低,经930 ℃固溶处理后,合金为单一β相。固溶温度在830 ℃以下时,随着固溶温度的升高,初生α相逐渐转变为β相,第二相强化作用减弱,合金强度逐渐降低,塑性逐渐提高,断裂方式为微孔聚集型;固溶温度在830 ℃以上时,随着固溶温度的升高,β相晶粒逐渐粗化,合金强度降低,塑性下降,断裂方式由微孔聚集型断裂向解理断裂转变。随着固溶温度从780 ℃升高至930 ℃,初生α相的含量降低,β/α相界逐渐减少,耐腐蚀性能提升。经780 ℃固溶1 h(水冷),500 ℃ 时效6 h(随炉冷却)处理后,细小针状的次生α相于亚稳β相中沉淀析出,合金强度显著提高,但塑性下降。  相似文献   

11.
以热轧态00Cr40Ni55Al3Ti合金为研究对象,采取1150~1250℃固溶+水冷/空冷的试验方案,探究了固溶温度及冷却方式对显微组织与力学性能的影响规律。研究结果表明,在1150~1250℃范围内,合金晶粒及α-Cr相的尺寸随固溶温度升高而增加,超过1150℃后晶粒急剧长大,超过1200℃固溶并空冷后,α-Cr相在晶界片层状析出。合金的显微硬度随固溶温度的升高而下降,冲击吸收能量在1200℃达到峰值;水冷条件下α-Cr相和纳米级γ′相析出受到抑制,与空冷条件相比,硬度、冲击吸收能量分别降低和升高;拉伸性能受冷却方式的影响显著,空冷条件抗拉强度相对较高,1250℃固溶后空冷引起混晶及晶界粗大片层组织出现,导致伸长率与水冷相比下降了26.5%。  相似文献   

12.
研究了不同固溶处理温度对Ti-5Al-2V-3Fe-0.2O合金热轧板材的显微组织、宏观硬度、耐磨性能的影响。结果表明:热轧态合金板材组织主要由α相和β相组成,随着固溶温度的升高,板材中α相含量减少而β相含量逐渐增多,出现了由初生等轴α相向针状β相转变进而向全片层状β组织转变的过程;与此同时,合金板材的硬度逐渐增大,磨损量与摩擦因数明显下降,因而耐磨性能提高;热轧态合金板材的磨损机制为磨粒磨损和黏着磨损的共同作用,而固溶处理后合金板材的磨损以磨粒磨损为主。  相似文献   

13.
研究了固溶温度、冷却方式以及时效温度对粉末成形TC4钛合金相组成、微观组织以及力学性能的影响,分析了固溶-时效热处理过程中微观组织变化及析出强化机制。结果表明,在两相区固溶处理,随固溶温度的升高,初生α相含量不断减少;单相区固溶处理后,初生α相全部溶解,析出相呈片层状;固溶时采用水冷可获得α+α′组织,时效过程中马氏体分解形成的次生弥散相实现合金强化。粉末成形TC4钛合金经950℃/1 h/WQ+500℃/4 h/AC热处理后,综合性能匹配良好,抗拉强度为1231 MPa,屈服强度为1126 MPa,延伸率为10.75%。  相似文献   

14.
对Ti-38644钛合金ϕ68 mm棒材进行了不同温度、保温时间和冷却方式的热处理试验,研究了不同热处理制度对合金棒材显微组织和力学性能的影响。结果表明,随着固溶温度的升高,析出α相含量增大,强度明显下降,塑性提高;随着时效温度的升高,析出α相粗化,强度降低,伸长率随之升高,强化效果降低;随着时效保温时间的延长,析出α相进一步增加,强度呈先增加后降低的趋势,塑性变化与之相反;固溶冷却方式对合金组织性能的影响也很明显,随着冷却速率的加快,获得的β晶粒比较细小,时效后的强度随之明显增高,同时伸长率下降也很明显。为了获得良好的强塑性匹配,最佳的固溶时效热处理工艺为810 ℃×1 h(油冷)+510 ℃×8 h(空冷)。  相似文献   

15.
采用正交试验研究不同热处理工艺对Ti55531合金显微组织和力学性能的影响。结果表明,显著影响合金显微组织和力学性能的因素依次是固溶温度、时效温度、时效时间。随固溶温度的升高,初生α相含量明显减少,α相的等轴性表现较好且分布更加均匀,抗拉强度逐渐增加,伸长率下降;随时效温度的升高,次生α相开始增加、长大,组织向双态组织转变,使得抗拉强度下降,伸长率增加。其合理的"固溶+时效"热处理工艺为"820℃×2h固溶,空冷+580℃×10h时效,空冷",抗拉强度为1 370MPa,伸长率为8.5%。  相似文献   

16.
对TC21钛合金进行双重固溶+时效热处理,研究固溶冷却速率、温度对合金显微组织的影响。研究表明,初生α相形貌主要受一次高温固溶温度控制,高温固溶冷却速率对次生α相含量及长宽比有显著的影响。高的固溶冷却速率可以保留更多的亚稳定β相,从而在时效过程析出更多细小的次生α相,导致强度增加,塑性及韧性下降。二次低温固溶温度对合金后续的时效响应有显著的影响,高的固溶温度可以保留更多的β相,促使更多细小的转变α相在时效中析出;低的固溶热处理温度导致固溶残余β相相含量减小,时效敏感性降低。时效过程导致残余β相的分解,特别是大块亚稳定β相区。  相似文献   

17.
对TC21钛合金进行双重固溶+时效热处理,研究固溶冷却速率、温度对合金显微组织的影响。研究表明,初生α相形貌主要受一次高温固溶温度控制,高温固溶冷却速率对次生α相含量及长宽比有显著的影响。高的固溶冷却速率可以保留更多的亚稳定β相,从而在时效过程析出更多细小的次生α相,导致强度增加,塑性及韧性下降。二次低温固溶温度对合金后续的时效响应有显著的影响,高的固溶温度可以保留更多的β相,促使更多细小的转变α相在时效中析出;低的固溶热处理温度导致固溶残余β相含量减小,时效敏感性降低。时效过程导致残余β相的分解,特别是大块亚稳定β相区。  相似文献   

18.
研究了Ti-1300合金固溶处理后低速率升温时效的α相析出行为及力学性能。通过SEM、TEM和拉伸试验等手段对不同固溶温度处理的Ti-1300合金进行显微组织观察和力学性能测试。结果表明:随着固溶温度由820 ℃降低至790 ℃,初生α相(αp)的尺寸变化不明显,但是其含量(面积分数)从0.8%增至6.7%;合金经4 ℃/min升温速率加热到500 ℃时效4 h,显微组织中析出次生α相(αs)的长度从0.098 μm 增加到0.440 μm。此外,固溶温度降低使合金的强度与塑性均提高,拉伸断口由沿晶脆性断裂特征转变为韧窝状的韧性断裂特征。820 ℃固溶处理的试样其抗拉强度为1358 MPa,断后伸长率小于2%,而790 ℃固溶处理的试样其抗拉强度为1548 MPa,断后伸长率为10.2%,可获得优良的强塑性匹配。分析认为790 ℃固溶处理组织中初生α相含量较多,其尺寸为微米尺度,同时基体中时效析出的片层αs相能产生显著的强化效果。  相似文献   

19.
对Φ200 mm×80 mm Ti6246合金棒坯在985℃(β锻造)、935℃(近β锻造)、900℃(α+β锻造)3种温度下进行锻饼试验,考察锻造温度对饼坯显微组织和力学性能的影响。结果表明:采用β锻造工艺,获得的显微组织为片层状α相+β转变组织;采用近β锻造工艺,可获得由球形α相+片层状α相+β转变组织构成的“三态组织”;采用α+β锻造工艺,可获得与原始组织相同的球状α相+β转变组织,但锻造后球状α相含量减少。随着锻造温度降低,Ti6246合金饼坯的室温和高温抗拉强度及屈服强度呈现先降低再升高的趋势,伸长率无显著变化;高温蠕变性能无明显变化趋势;427℃下热暴露100 h后,室温抗拉强度和屈服强度呈现先升高再降低的趋势,塑性指标无显著变化。  相似文献   

20.
通过光学显微镜、扫描电镜及拉伸性能测试等方式研究了固溶温度对一种新型亚稳β钛合金(Ti-3Al-8V-4Mo-4Cr-4Zr-2Nb-2Fe)组织与拉伸性能的影响。结果表明,在660~720℃范围内,随着固溶温度的升高,实验合金组织中的初生α相数量减少,β基体尺寸增大,抗拉强度降低,塑性升高。合金经460℃低温时效处理后,组织中的次生α相以短棒状和长针状两种形态析出,前者在初生α相密集区析出,后者在β晶内析出。随着固溶温度的升高,次生α相的厚度增加,长宽比减小,致密度降低,形态由针状向短棒状转变,同时,初生α相的含量不断减少;当固溶温度升至740℃时,晶内已无初生α相析出。合金经720℃×30 min/AC+460℃×12 h/AC处理后,具有良好的强韧性匹配。720℃为该合金的最佳固溶温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号